DOI: 10.13870/j.cnki.stbcxb.2025.03.033

CSTR: 32310.14.stbcxb.2025.03.033

尹志荣, 马兰, 金建新, 等. 水肥与间作对设施黄瓜、芹菜品质的调控机制[J]. 水土保持学报, 2025, 39(3): 303-314.

YIN Zhirong, MA Lan, JIN Jianxin, et al. Regulation mechanisms of water-fertilizer management and intercropping on the quality of greenhouse cucumber and celery [J]. Journal of Soil and Water Conservation, 2025, 39(3):303-314.

水肥与间作对设施黄瓜、芹菜品质的调控机制

尹志荣,马兰,金建新,何进勤,雷金银

(宁夏农林科学院农业资源与环境研究所,银川 750002)

摘 要:[目的]为明确水肥管理和设施间作等措施对蔬菜土壤微生态及黄瓜、芹菜品质的影响。[方法]通过连续3a的田间试验,采用连续水肥(CF,continuous fertilization in irrigation)和隔水一肥(AF,alternating fertilization in irrigation)2种水肥模式,结合黄瓜单作(CU,cucumber monoculture)、芹菜单作(CE,celery monoculture)、黄瓜与芹菜间作(CC,cucumber and celery intercropping)3种种植模式,系统评估不同处理对作物品质、土壤理化性质和微生物群落的影响。[结果]CCCF处理显著提升黄瓜和芹菜的维生素C含量(提升16.6%~200%),而CUCF处理则在可溶性糖积累方面表现出优势。XGB模型分析揭示,速效钾和pH分别是调控维生素C和可溶性糖含量的关键因子。微生物组分析显示,间作处理富集特异性ASVs(7371~7526个),显著提高Steroidobacter、Flavobacterium等促生菌的丰度,同时抑制病原真菌的生长。功能预测表明,水肥管理主要影响氮循环功能,间作则增强甲烷营养功能。微生物网络分析进一步揭示,CF形成紧密的细菌互作网络,AF提高网络模块性,而CC则在保持高连接性的同时维持适度模块性。[结论]不同水肥和种植管理措施通过调控土壤理化性质、微生物群落结构和生态网络,对作物品质产生差异化影响。其中,CCCF和CUCF分别适合提升维生素C和可溶性糖含量,为设施农业精准调控作物品质提供新思路。

关键词:水肥管理;间作;设施土壤;微生物组;微生物网络;调控机制

中图分类号:S158.5

文献标识码:A

文章编号:1009-2242(2025)03-0303-12

Regulation Mechanisms of Water-Fertilizer Management and Intercropping on the Quality of Greenhouse Cucumber and Celery

YIN Zhirong, MA Lan, JIN Jianxin, HE Jinqin, LEI Jinyin

(Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China)

Abstract: [**Objective**] This study aimed to investigate the effects of water-fertilizer management and greenhouse intercropping on soil microecology and the quality of cucumber and celery. [**Methods**] A three-year field experiment was conducted. Two water-fertilizer modes, including continuous fertilization in irrigation (CF) and alternating fertilization in irrigation (AF), were employed. There were three planting patterns, including cucumber monoculture (CU), celery monoculture (CE), and cucumber-celery intercropping (CC). The impacts of different treatments on crop quality, soil physicochemical properties, and microbial communities were systematically evaluated. [**Results**] The CCCF treatment significantly enhanced the vitamin C content in both cucumber and celery (16.6%-200%), while the CUCF treatment exhibited advantages in soluble sugar accumulation. XGB model analysis revealed that available potassium and pH were the key factors regulating vitamin C and soluble sugar content, respectively. Microbiome analysis indicated that intercropping treatments

资助项目:宁夏农业高质量发展和生态保护科技创新示范项目(NGSB-2021-11-02);宁夏自然科学基金项目(2024AAC03369);国家重点研发 计划项目(2022YFD1900205)

第一作者: 尹志荣(1982—), 女, 硕士, 副研究员, 主要从事节水与水肥协同研究。 E-mail: yinzhirong1982129@126.com 通信作者: 尹志荣(1982—), 女, 硕士, 副研究员, 主要从事节水与水肥协同研究。 E-mail: yinzhirong1982129@126.com

enriched specific ASVs (7 371-7 526) and significantly increased the abundance of plant growth-promoting

bacteria, including *Steroidobacter* and *Flavobacterium*, while inhibiting pathogenic fungal growth. Functional prediction showed that water-fertilizer management primarily influenced nitrogen cycling functions, whereas intercropping enhanced methanotrophy functions. Microbial co-occurrence network analysis further revealed that CF formed tight bacterial networks, AF increased network modularity, and CC maintained high connectivity while preserving moderate modularity. [Conclusion] Different water-fertilizer and planting management practices differentially influenced crop quality through the regulation of soil physicochemical properties, microbial community structure, and ecological networks. Specifically, CCCF and CUCF were suitable for enhancing vitamin C and soluble sugar content, respectively, providing new insights for precise quality regulation in protected agriculture.

Keywords: water-fertilizer management; intercropping; greenhouse soil; microbiome; microbial network; regulation mechanism

Received; 2025-01-06 **Revised**; 2025-02-18 **Accepted**; 2025-03-01 **Online**(www.cnki.net); 2025-05-08

作物品质是现代农业生产的核心目标之一,其形成过程与土壤微生态环境息息相关[1]。已有研究[2]表明,土壤微生物作为农业生态系统的重要驱动因子,通过复杂的代谢网络与根际土壤理化特性形成动态耦合,在养分转化、次生代谢物合成和作物健康生长中发挥关键作用。设施农业作为现代农业的重要形式,通过环境控制和精准管理,为作物品质调控提供理想平台[3]。这些管理措施可以通过改变土壤水分、养分分布和pH深刻影响微生物的群落结构和生态功能,进而调控作物品质的形成[4-5]。

传统设施农业过度依赖水肥投入的粗放管理模式,不仅导致资源利用效率低下,还引发土壤盐渍化和微生物多样性下降等问题^[6-7]。尤其在长期连续种植单一作物的情况下,土壤养分失衡与微生物群落退化更为突出,从而削弱作物品质提升的潜力^[8]。这种单作连续栽培导致的微生态退化和水肥利用效率低下,亟须通过合理的种植模式和水肥调控策略来改善。

作为一种可同时优化种植模式和养分管理的方案,间作以其生态友好的特点为调控土壤微生态环境提供新思路^[9-10]。合理的间作模式可改善根际环境,增加有益微生物数量和活性,抑制病原菌扩散,并通过根系分泌物的互作来调控微生物群落的组成和功能,从而促进养分循环和次生代谢物合成^[3,9,11]。在设施农业条件下,尚缺乏对"水肥配置—间作模式"协同管理如何精准调控土壤微生态并最终影响作物品质的系统解析。此外,现有研究多聚焦于单一因素(如水肥管理或间作配置)的影响,尚未对它们的综合作用机理及其对土壤健康与作物品质形成的耦合关系进行深入探讨。

黄瓜和芹菜作为设施农业中的重要经济作物,

对土壤微生态环境和品质形成的响应敏感。为此,本研究于宁夏银川西夏区平吉堡现代农业示范园区开展连续3a的田间试验,设置6种不同的水肥管理和间作模式组合,通过监测黄瓜和芹菜的品质指标,以及根际土壤理化特性和土壤细菌、真菌群落的动态变化,综合评估水肥与间作对土壤微生态及作物品质的影响。本研究旨在评估不同水肥配置和设施间作对作物品质的影响,明确水肥管理和间作模式对土壤微生态的调控效应,阐明微生态调控介导的作物品质形成机制。研究结果将为设施土壤健康调控及作物品质形成机制。研究结果将为设施土壤健康调控及作物品质提升提供理论依据和技术支持。

1 材料与方法

1.1 样地概况

试验于 2022年4月至 2024年8月在宁夏银川西夏区平吉堡现代农业示范园区内 (106°01′00″E, 38°24′00″N)连续开展。该地区年平均气温 9.6°C, 年平均降水量 196 mm, 具有典型的半干旱特征, 年无霜期约 188 d, 空气相对湿度 40%。试验地土壤类型为灰钙土, 供试土壤体积质量 1.43 g/cm³, 田间持水率 23.17%, 有机质 16.70 g/kg, pH 8.23, 全盐 1.16 g/kg, 全氮 1.06 g/kg, 全磷 1.23 g/kg, 全钾 18.63 g/kg, 速效钾 237 mg/kg, 速效磷 75 mg/kg。试验设施为标准塑料拱棚(长 100 m, 宽 15.5 m), 面积 1 550 m², 采用塑料薄膜作为覆盖材料, 东西 2个采光屋面各 700 m², 内部设有 1.5 m 宽砖砌过道。

1.2 试验设计

以黄瓜和芹菜为供试作物,分别于2022年4月5日、2023年3月25日和2024年4月11日进行定植。采用两因素随机区组设计,设置种植模式和灌水施肥管理2个处理因素,每个处理重复3次。种植模式包括黄瓜与芹菜间作(CC, cucumber and celery

intercropping)、黄瓜单作(CU,cucumber monoculture)及 芹菜单作(CE,celery monoculture);灌水施肥模式包括一水一肥(CF,continuous fertilization in irrigation)和隔水一肥(AF,alternating fertilization in irrigation)。据此设置6个处理组合:CCCF、CCAF、CUCF、CUAF、CECF和CEAF,每个处理重复3次。黄瓜按东西走向起垄,起垄的同时覆膜和铺滴灌带,垄面宽100cm,每垄移栽2行,行距40~50cm,株距30cm,垄间距80cm。黄瓜与芹菜间作是于黄瓜移栽后在2种植垄间移栽芹菜苗,芹菜按行间20cm,株距15cm移栽,共移栽3行。黄瓜单作、芹菜单作种植要求一致。3种种植模式的种植面积均为420m²。

试验采用滴灌节水灌溉,黄瓜滴灌量及灌溉次数参照当地常规灌溉量设定为常规灌水量的80%,即180 m³/(667 m²),灌水频率控制在7~10 d/次,根据天气情况可随时调节。为方便试验统一管理,芹菜灌水时间与黄瓜灌水时间保持一致,灌水量为100 m³/(667 m²)。灌水量均通过水表计量控制。

肥料说明:基肥以商品有机肥600 kg/(667 m²)、 蚯蚓粪400 kg/(667 m²)和复合肥80 kg/(667 m²)为 基准进行施用。追肥采用减量施肥模式,在常规大 量元素水溶肥用量基础上减少20%,配施沼液复合 微生物肥和抗茬灵微生物菌剂,大量元素水溶肥 120 kg/(667 m²)、沼液复合微生物肥150 kg/(667 m²) 和抗茬灵微生物菌剂1000 mL/(667 m²)。其中,大量 元素水溶肥在定植至开花期以高氮型为主,开花后至 拉秧期以高钾型为主。

1.3 测定方法

与每年试验种植前及拉秧时采用五点法采集根层 0~20 cm 土壤样品,单作处理组在作物行内和行间各取 3个标准样品混合^[12]。采集的土样分为 2 部分:一部分风干过筛用于理化性质测定;另一部分-80 °C 保存用于微生物分析。

土壤理化性质测定参照《土壤农业化学分析方法》^[13]方法进行。pH采用pH计测定(土水比1:2.5); 电导率采用电导率仪测定;有机质采用全有机碳分析仪(Multi-N/C 3100, Jena)测定;水解性氮采用碱解扩散法测定;有效磷采用Bray法,紫外分光光度计(UV2310 Ⅱ)测定;速效钾采用火焰光度法测定(6400A)。

与黄瓜、芹菜种植后,随机选择并标记固定每个处理其中的15垄为植物调查取样及产量收获测产小区。植物的可溶性糖采用蒽酮比色法测定;植物硝酸盐采用紫外分光光度法测定;植物的维生素C和可溶性蛋白分析分别使用2,6-二氯靛酚滴定法和考马

斯亮蓝法。植物成熟时用电子天平(精度为 0.01 g) 称量选定区域的每次采摘量,并在试验结束后汇总换算为黄瓜、芹菜全生育期的产量。因本文重点从植物品质的角度进行分析,故未对产量进行详细分析。

采用 FastDNA® Spin Kit 提取土壤微生物 DNA,以 NanoDrop2000 检测 DNA 纯度和浓度,1.0% 琼脂糖凝胶电泳检测 DNA 完整性。细菌 16S rRNA 的 V4-V5 区采用 338F/806R 引物扩增,真菌 ITS1 区采用 ITS1F/ITS2R 引物扩增。PCR产物在 Illumina Miseq PE300平台(美吉生物医药有限公司)进行测序。

1.4 数据分析

微生物群落数据分析基于QIIME 2 2019.4平台完成。原始数据经demux插件解复用后,通过cutadapt切除引物序列,采用DADA2进行质量过滤、去噪声、序列合并及嵌合体去除。分类学注释采用 feature-classifier 的 classify-sklearn 分类器,与 Greengenes 和UNITE数据库比对。Alpha多样性采用 Chao1 和Shannon 指数评估,Beta 多样性基于 Bray-Curtis 距离计算。

统计分析在R环境中进行,采用ggplot2进行数据可视化。不同处理间差异采用单因素方差分析(ANOVA),而水肥管理和种植模式的交互作用采用多因素方差分析进行评估。组间多重比较采用Tukey检验。利用XGBoost算法考察土壤理化因子对作物品质的贡献。细菌和真菌功能预测分别采用FAPROTAX和FUNGuild完成。

2 结果与分析

2.1 水肥管理和种植模式对黄瓜、芹菜品质的影响

连续3a的研究结果表明,不同水肥管理和种植模式显著影响黄瓜和芹菜的品质特征(表1)。CCCF显著促进黄瓜维生素C的积累,该处理下在2022年达44.11 mg/kg,较CUCF处理提高16.6%(p<0.05)。促进效应在2023年和2024年持续存在,表明间作连续水肥对维生素C积累具有稳定的调控作用。然而,就可溶性糖而言,CUCF表现出明显优势,表明不同品质指标对水肥管理和种植模式呈非线性响应模式。意味着在设施农业生产中,需要根据作物品质目标的优先级,合理选择管理措施。

相比于间作处理,芹菜品质对水肥管理的响应 更为显著。CF的维生素C质量分数在2022年达159.02~161.00 mg/kg,较AF提高5.91%~24.20% (p<0.05)。特别是在2024年,CCCF处理下芹菜维生素C质量分数较其他处理提升99.89%~200.00%,表明间作连续水肥对芹菜营养品质的显著调控效应。

表1 不同管理措施下黄瓜和芹菜品质

Table 1 The quality of cucumber and celery under different management practices

	处理	黄瓜						
年份		可溶性糖/%	维生素 C/ (mg·kg ⁻¹)	可溶性蛋白/	可溶性糖/%	维生素 C/ (mg·kg ⁻¹)	硝酸盐/ (mg·kg ⁻¹)	
	CU/CECF	1.49 ± 0.04 a	$37.82 \pm 0.10b$	$0.30 \pm 0.01b$	0.48±0.02c	159.02 ± 0.16 a	834±12.82d	
2022	CCCF	$0.50 \pm 0.04 b$	44.11 ± 0.13 a	$0.40 \pm 0.02a$	$0.49 \pm 0.03a$	$161.00 \pm 0.16a$	$1597 \pm 33.64 b$	
2022	CU/CEAF	$0.47 \pm 0.04 \mathrm{b}$	$32.91 \pm 0.27 b$	$0.40 \pm 0.02a$	$0.45 \pm 0.02d$	$128.04 \pm 0.10c$	$1011\!\pm\!10.29c$	
	CCAF	$0.50 \pm 0.04 b$	$34.74 \pm 0.04 \mathrm{b}$	0.40 ± 0.03 a	$0.47 \pm 0.02b$	$152.02 \pm 0.23 b$	$2\ 248 \pm 11.43$ a	
	CU/CECF	1.78 ± 0.02 a	$51.33 \pm 0.42b$	0.41 ± 0.02 a	$0.86 \pm 0.07a$	$100.43 \pm 0.32 d$	900±33.80c	
2023	CCCF	$1.17 \pm 0.07 \mathrm{b}$	61.21 ± 0.15 a	$0.40\!\pm\!0.02ab$	$0.58 \!\pm\! 0.05c$	$162.01\!\pm\!0.72a$	$2\ 900\!\pm\!194.24b$	
2023	CU/CEAF	$1.68 \!\pm\! 0.11$ a	$41.71 \pm 0.07c$	$0.35 \pm 0.02b$	$0.67 \pm 0.03 bc$	$135.23 \pm 0.37 \mathrm{b}$	$900 \pm 38.29c$	
	CCAF	1.58 ± 0.03 a	$56.34 \pm 0.05 ab$	$0.37\!\pm\!0.02ab$	$0.78 \pm 0.02 ab$	$119.03 \pm 0.32c$	4000 ± 107.78 a	
	CU/CECF	1.25 ± 0.02 a	$109.12\!\pm\!0.16b$	$0.04 \pm 0.02a$	$0.08 \pm 0.01c$	$36.42 \pm 0.19c$	$2400 \pm 53.07 \mathrm{b}$	
2024	CCCF	1.08 ± 0.09 a	$164.20\!\pm\!1.26a$	$0.02 \pm 0.01a$	$0.38 \pm 0.03a$	109.28 ± 0.25 a	$2800\!\pm\!130.23a$	
	CU/CEAF	1.08 ± 0.01 a	$90.93 \pm 0.24 b$	$0.02 \pm 0.01a$	$0.30 \pm 0.03b$	$54.61 \pm 0.12 b$	$2\ 100 \pm 99.94c$	
	CCAF	$0.78 \pm 0.06 \mathrm{b}$	90.92±0.01b	$0.03 \pm 0.01a$	$0.08 \pm 0.01c$	$54.67 \pm 0.29 b$	2 300±7.27bc	

注:表中数据为平均值士标准误;同列不同小写字母表示不同处理间在0.05水平上差异。下同。

2.2 水肥管理和种植模式对土壤理化特性的影响

水肥管理对土壤理化性质的影响也极为显著(表2)。其中,水解性氮(p=0.01)最为显著,其次是电导率(p=0.09)和有机质(p=0.06)。AF表现出较强的土壤氮素积累效应。2022年CUAF处理的水解性氮质量分数达161.00 mg/kg,2023年仍保持较高水平,为87.75 mg/kg。表明隔水一肥模式能够显著改善土壤氮素。长期累积效应需要进一步关注其对土壤微生物和作物品质的影响。不同作物在相同处理时,土壤理化特性仍然具有显著差异,如CUAF的土壤电导率显著高于CEAF处理,可能与作物种类及其养分吸收特性有关。

种植模式对土壤理化性质的影响相对较小,pH、电导率、有机质和水解性氮等指标均未达显著水平 (p>0.05)。然而,水肥管理与种植模式的交互作用显著影响土壤水解性氮(p<0.01)、有机质(p=0.01)和电导率(p=0.02),而单个处理的影响不显著,表明二者在调控土壤理化性质方面有明显的协同效应。

不同水肥管理和间作模式组合对不同植物的土壤理化具有差异性的调控效应。为明确关键的响应因子,基于XGB模型,分析土壤理化因子对作物品质的贡献度(图1)。水肥管理和种植模式诱导的土壤环境变化能够显著解释黄瓜和芹菜品质的变化(R²为0.673~0.935)。表明水肥管理和种植模式通过调控土壤环境在作物品质形成过程中发挥重要作用。具体而言,pH是影响黄瓜可溶性糖的关键因子,而速效钾则是调控维生素C积累的主导因素(贡献率>

80%).

2.3 水肥管理和种植模式对土壤微生物群落结构的 影响

水肥管理显著影响土壤细菌群落多样性(表3,p=0.04)。AF显著提升细菌群落的多样性指数,其中CUAF和CCAF处理的细菌超指数较相应的CF处理分别提高约10.0%和24.0%。虽然水肥管理对细菌的香农平均度和系统发育多样性影响不显著(p=0.49,p=0.10),但AF表现出较高的香农平均度和香农指数,意味着该隔水一肥模式可能有利于形成更复杂的细菌群落结构。

真菌群落对管理措施的响应表现出一定特异性。尽管水肥管理对真菌群落的 alpha 多样性指数影响未达显著水平(p>0.05),但 AF 处理下的真菌超指数和香农指数仍较 CF 处理提高 $2.7\%\sim4.8\%$,反映出水肥管理对真菌群落结构具有潜在的调控作用。

群落组成分析进一步揭示管理措施的微生态效应。细菌群落中6个处理共有821个ASVs,其中间作处理CCCF和CCAF分别独有7371和7526个特异性ASVs,而AF处理组则富集7480~7534个ASVs(图2a)。真菌群落呈现相似格局,共有ASVs为130个,间作处理特异性ASVs为265~313个,AF处理组则达到658~756个(图2b)。表明不同水肥管理和种植模式对微生物群落组成产生显著的选择效应,其中CC和AF处理均能显著增加特异性微生物类群的丰度,尤其是细菌群落的富集。

表 2 不同管理措施下土壤理化因子

Table 2 Soil p	hvsicochemical	properties under	different	management practices
----------------	----------------	------------------	-----------	----------------------

年份	处理	рН	电导率/ (ms·cm ⁻¹)	有机质/ (g•kg ⁻¹)	水解性氮/ (mg·kg ⁻¹)	有效磷/ (mg•kg ⁻¹)	速效钾/ (mg·kg ⁻¹)
	CUCF	8.64±0.19a	0.19 ± 0.02 cd	22.00±0.82ab	96.00±4.00bc	72.30±1.04d	270.00±7.19cd
	CECF	8.59 ± 0.13 a	$0.21 \pm 0.02c$	20.00 ± 1.63 b	$110.00 \pm 8.57 ab$	$85.50 \pm 1.67 b$	$370.00 \pm 2.29 ab$
2022	CCCF	8.51 ± 0.53 a	$0.27 \pm 0.02 b$	$21.40 \pm 0.44 ab$	$92.00 \pm 6.86c$	$80.10 \pm 4.34c$	$325.00 \pm 4.33b$
2022	CUAF	$8.39 \pm 0.20a$	$0.38 \pm 0.02a$	24.00 ± 0.16 a	$161.00 \pm 2.37a$	$117.20 \pm 6.52a$	$565.00 \pm 20.82a$
	CEAF	8.72 ± 0.51 a	$0.14 \pm 0.02e$	19.30 ± 1.33 b	$92.00 \pm 1.80c$	$64.60 \pm 3.54 \mathrm{e}$	$290.00\!\pm\!17.96c$
	CCAF	$8.78 \pm 0.47a$	$0.17 \pm 0.01d$	$18.40 \pm 1.27 \mathrm{b}$	$76.00 \pm 5.55 d$	$77.00 \pm 1.31c$	$256.00 \pm 16.08 d$
	CUCF	$7.95 \pm 0.17a$	$0.32 \pm 0.02a$	$22.95 \pm 0.65 bc$	$86.90 \pm 6.85 bc$	208.60 ± 9.50 cd	$427.60\!\pm\!1.52ab$
	CECF	$7.96 \pm 0.49a$	$0.28 \pm 0.02a$	$20.80 \pm 1.16 cd$	$89.50 \pm 4.86b$	$242.30\!\pm\!15.41b$	$329.60 \pm 3.15c$
2023	CCCF	$7.93 \pm 0.01 ab$	$0.31 \pm 0.02a$	30.55 ± 1.35 a	$111.45 \pm 2.41a$	$338.50 \pm 1.35a$	$425.10 \pm 5.46 ab$
2023	CUAF	$8.00 \pm 0.08a$	$0.27\!\pm\!0.02ab$	$25.10 \pm 0.99b$	$87.75 \pm 2.92 bc$	$241.80 \pm 2.55 b$	$371.30 \pm 18.92 bc$
	CEAF	7.97 ± 0.24 a	$0.26 \pm 0.02 ab$	$17.70 \pm 0.11d$	$73.20 \pm 0.83c$	$218.80 \pm 3.53 d$	$436.10\!\pm\!30.06a$
	CCAF	$8.09 \pm 0.17 b$	$0.21 \pm 0.02 b$	$22.50 \pm 1.27 bc$	81.45 ± 5.35 bc	$194.75 \pm 12.59 d$	$338.85 \pm 24.83c$
	CUCF	$7.83 \pm 0.26 ab$	$0.23\!\pm\!0.11ab$	$21.67 \pm 1.47 ab$	104.33 ± 21.17 a	206.33 ± 15.33 abc	202.33 ± 26.54 a
	CECF	$7.89\!\pm\!0.15ab$	$0.23\!\pm\!0.11ab$	20.53 ± 1.31 b	$105.33 \pm 20.42a$	156.33 ± 10.21 d	$228.00 \pm 8.16a$
2024	CCCF	$7.88 \pm 0.12 b$	$0.23 \pm 0.03a$	$27.83 \pm 2.39a$	$124.67 \pm 9.84a$	$291.67\!\pm\!18.62a$	$224.33 \pm 13.07a$
2024	CUAF	$8.09\!\pm\!0.10ab$	$0.18\!\pm\!0.04\mathrm{ab}$	$22.23 \pm 2.98 ab$	103.00 ± 20.40 a	$242.00 \pm 62.79 ab$	$232.00 \pm 9.93a$
	CEAF	$8.01 \pm 0.05 ab$	$0.21\!\pm\!0.04\mathrm{ab}$	$19.23 \pm 0.76 b$	96.00 ± 10.68 a	$183.00 \pm 13.49 bcd$	$210.67 \pm 20.27a$
	CCAF	$8.07 \pm 0.04a$	$0.13 \pm 0.02 b$	$20.00 \pm 1.98 \mathrm{b}$	$89.33 \pm 2.49a$	$174.00 \pm 4.90 cd$	$226.00 \pm 18.4a$
水肥	管理	p = 0.16	p=0.09	p=0.06	$p = 0.01^*$	p=0.39	p=0.90
种植	模式	p = 0.71	p=0.35	p=0.20	p = 0.56	p=0.53	p=0.46
水肥管理*种植模式		p=0.27	$p=0.02^*$	$p=0.01^*$	$p=0^{*}$	p=0.15	p=0.50

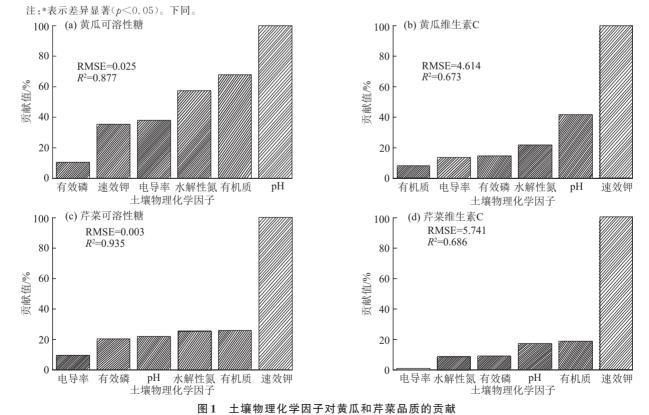
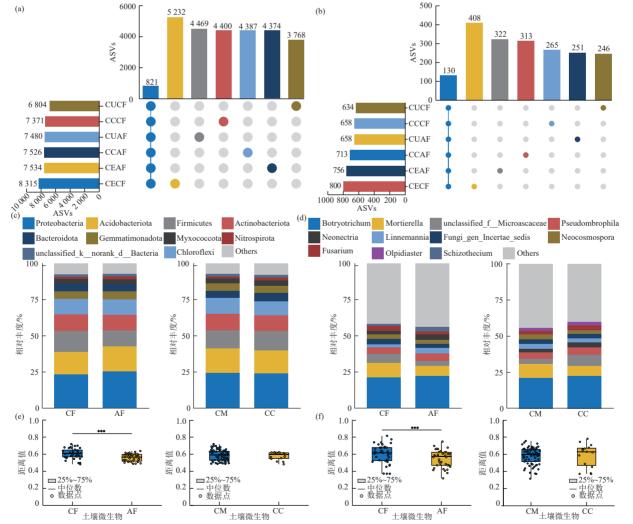



Fig. 1 Contribution of soil physicochemical factors to the quality of cucumber and celery http://stbcxb.alljournal.com.cn

表 3 不同管理措施下土壤微生物 alpha 多样性

Table 3 Alpha-diversity of soil microbe under different management practices

土壤微生物 处理		超指数	香农指数	香农平均度	系统发育多样性
	CUCF	2 888.68±111.98a	7.22 ± 0.05 a	0.91±0a	334.33 ± 19.44 a
	CECF	$3032.13\!\pm\!242.77a$	7.13 ± 0.05 a	$0.89 \pm 0c$	349.45 ± 35.37 a
细菌	CCCF	$3\ 163.95 \pm 263.34$ a	$7.25 \pm 0.09a$	$0.90 \pm 0 \mathrm{ab}$	365.44 ± 43.53 a
41 图	CUAF	$3\ 176.92 \pm 109.23$ a	7.27 ± 0.04 a	$0.90 \pm 0.01 ab$	368.35 ± 28.80 a
	CEAF	$3\ 267.40\pm312.73a$	$7.29 \pm 0.09a$	$0.90 \pm 0 ab$	370.92 ± 35.87 a
	CCAF	$3583.55 \pm 332.08a$	$7.30 \pm 0.07a$	$0.90 \pm 0 \mathrm{bc}$	416.22 ± 48.84 a
水肥管	管理	$p = 0.04^*$	$p = 0.04^*$	p = 0.49	p = 0.10
种植模	莫式	p = 0.58	p = 0.86	p = 0.75	p = 0.63
水肥管理×	种植模式	p = 0.59	p = 0.53	p = 0.48	p = 0.59
	CUCF	$315.65 \pm 52.35a$	$3.90 \pm 0.24 ab$	$0.06 \pm 0.01 ab$	90.21 ± 12.84 a
	CECF	$360.51 \pm 61.57a$	$4.05 \pm 0.09a$	$0.06 \pm 0.01a$	$104.80 \pm 8.24a$
真菌	CCCF	$332.25 \pm 35.28a$	$3.59 \pm 0.46 ab$	$0.04 \pm 0.01 ab$	88.79 ± 11.00 a
具困	CUAF	$324.17 \pm 39.88a$	$3.98 \pm 0.11a$	$0.06 \pm 0.01 ab$	86.20 ± 7.45 a
	CEAF	$377.70 \pm 22.33a$	$3.91 \pm 0.07a$	$0.04 \pm 0.01b$	91.97 ± 5.97 a
	CCAF	$344.43 \pm 5.00a$	$3.95 \pm 0.16a$	$0.06 \pm 0.00a$	94.59 ± 1.21 a
水肥管		p = 0.09	p = 0.32	p = 0.47	p = 0.13
种植模		p = 0.57	p = 0.51	p = 0.77	p = 0.78
水肥管理×种植模式		p=0.90	p = 0.60	p = 0.17	p=0.22

注:图 a、图 b为细菌和真菌 ASV 水平的 Upset 图;图 c、图 d为细菌和真菌前 10个门相对丰度;图 e、图 f为细菌和真菌群落 Beta 多样性差异。

图 2 不同管理措施下土壤细菌和真菌群落组成及差异

 $Fig.~2 \quad Compositions~and~differences~of~soil~bacterial~and~fungal~communities~under~different~management~practices\\ &~http://stbcxb.alljournal.com.cn$

由图 2 可知,在门水平上,水肥管理和种植模式主要通过调控丰度而非类群组成影响细菌群落,优势门包括 Proteobacteria、Acidobacteriota、Firmicutes、Actinobacteriota和 Chloroflexi。相比之下,真菌群落的响应更为显著,AF处理富集 Botryotrichum、Pseudombrophila等类群,CC则通过提高Botryotrichum、Fusarium等的丰度增强优势门的主导地位。Beta 多样性分析表明,水肥管理是影响微生物群落组成的主导因素(p<0.001)。表明水肥管理是塑造土壤微生物群落结构的关键驱动力,细菌群

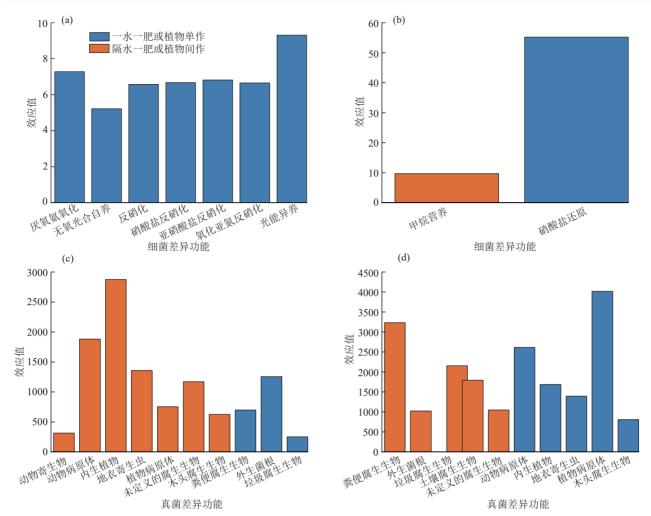
落主要表现为丰度的变化,而真菌群落则呈现出更显著的类群组成差异。

2.4 关键微生物类群对水肥管理和种植模式的响应 特征

差异性分析识别出多个对水肥管理和种植模式 敏感的指示性微生物(图 3)。AF 处理显著富集 $f_TRA3-20$ 、Chryseolinea 等细菌类群(p<0.05)及 Limemannia、Schizothecium等真菌(p<0.01)。CC 模式 则促进 Steroidobacter、Flavobacterium等促生菌的积累 (p<0.05),同时抑制某些潜在病原菌的生长。

注:图 a 为不同水肥管理下细菌差异物种;图 b 为不同水肥管理下真菌差异物种;图 c 为不同种植模式下细菌差异物种;图 d 为不同种植模式 下真菌差异物种。

图 3 不同管理措施下土壤细菌和真菌属差异物种


Fig. 3 Differential species of soil bacterial and fungal genera under different management practices

功能预测显示(图 4)结果,CF处理增强细菌的氮循环相关功能,包括硝化、反硝化等过程。间作条件下甲烷营养功能增强,而单作(CU或CE)则表现出较强的硝酸盐还原能力。真菌功能组表现出明显的处理特异性,即AF处理影响真菌群落特性超过细菌群落,CF则显著富集外生菌根真菌,而植物内生菌在AF处理中较为丰富。值得注意的是,CC显著降低病原真菌的丰度,可能是其促进作物生长的重要机制之一。这些功能组的差异性分布反映土壤微生物群落对管理措施的适应性响应机制。值得注意的是,不同功能类群之间可能存在协同进化关系,例如,氮循环相关功能与真菌共生体的动态平衡可能是土壤生态系统自我调节的关键^[2]。这种功能层面的适应性变化暗示管理措施具有调控生态系统稳定性的能力。

2.5 微生物共现网络响应管理措施的特征

微生物间的互作关系呈现出显著的处理效应 (图5)。网络分析结果表明,群落丰度与连接度并不 总是正相关,凸显微生物互作在群落构建中的重要性(表4)。CF处理形成更为紧密的细菌互作网络,表现为较高的边数(204)、平均度(8.16)和图密度(0.17)。然而,AF处理下的网络表现出更高的模块性和更短的平均路径长度,表明该处理可能促进微生物群落的功能分化和信息传递效率。与细菌网络相比,真菌网络对水肥措施的响应较弱。

CC的微生物网络表现出较强的互作强度。在细菌网络方面,CC处理的平均度(5.70)和图密度(0.12)显著高于单作处理CU和CE(2.57~4.13和0.06~0.09)。在真菌网络特征上,CC处理的平均度(6.33)和平均聚类系数(0.63)同样高于单作处理(4.53~5.65和0.51),表明间作显著增强微生物群落成员间的互作。这些拓扑结构的差异揭示管理措施对微生物群落组织方式的塑造作用。水肥管理主要通过改变网络的紧密度和模块化来调节功能分化,而间作则通过增强群落成员间的互作来提高网络的稳定性。

注:图 a 为不同水肥管理下细菌差异功能;图 b 为不同种植模式下细菌差异功能;图 c 为不同水肥管理下真菌差异功能;图 d 为不同种植模式下真菌差异功能。

图 4 不同管理措施下土壤细菌和真菌属差异功能

Fig.4 Differential functions of soil bacterial and fungal genera under different management practices 表 4 不同管理措施下微生物共现网络的拓扑属性

Table 4 Topological properties of microbial co-occurrence networks under different management practices

网络类型	属性	一水一肥CF	隔水一肥AF	黄瓜单作CU	芹菜单作CE	间作CC
	节点	50	48	45	47	47
	边	204	122	93	121	134
	平均度	8.16	2.54	4.13	2.57	5.70
细菌网络	网络直径	5	5	13	6	10
细图网络	图密度	0.17	0.05	0.09	0.06	0.12
	模块化	0.42	0.53	0.61	0.55	0.49
	平均聚类系数	0.53	0.21	0.51	0.28	0.52
	平均路径长度	2.52	2.23	4.51	1.94	3.49
	节点	49	50	51	49	49
	边	100	122	144	111	155
	平均度	4.08	4.88	5.65	4.53	6.33
真菌网络	网络直径	9	7	9	14	10
具困附绍	图密度	0.09	0.1	0.11	0.09	0.13
	模块化	0.51	0.49	0.51	0.53	0.53
	平均聚类系数	0.44	0.47	0.51	0.51	0.63
	平均路径长度	3.13	3.06	3.39	5.11	3.76

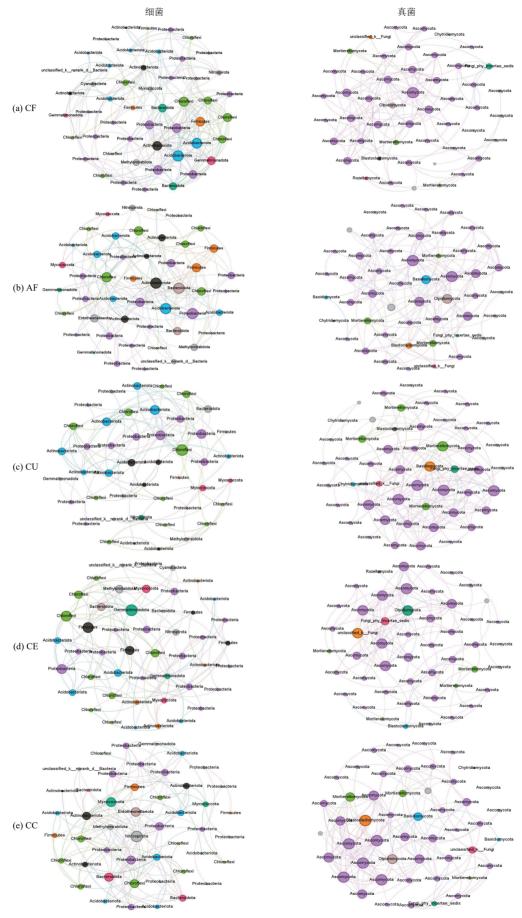


图 5 不同管理措施下微生物的共现网络

Fig. 5 Microbial co-occurrence networks under different management practices $http_{:} \, /\!\!/ \, stbcxb.alljournal.com.cn$

3 讨论

3.1 水肥管理和种植模式调控黄瓜和芹菜品质的非 生物过程

本研究发现,CCCF处理对维生素C的积累具有显著且持续的促进作用,但对可溶性糖的影响则呈现出不同模式。XGB模型分析揭示这种差异化响应背后的关键驱动因素,即速效钾是维生素C积累的主要调控因子(贡献率>80%),而pH则主导着可溶性糖的形成(图1)。与HU等[14]的研究相呼应,钾素通过调控L-半胱氨酸脱氢酶和抗坏血酸氧化酶的活性,在维生素C合成过程中发挥关键作用。因此,CCCF处理可能通过优化水肥配比提供更均衡的钾素营养,从而促进维生素C的合成。相比之下,在可溶性糖的积累方面,WANG等[15]研究表明,适宜的pH环境能提高根系对养分的吸收效率,进而影响糖分转运和积累。解释了为什么CUCF处理下黄瓜表现出较高的可溶性糖,该处理可能创造更适合糖分积累的pH环境。

水肥管理与种植模式的显著交互效应揭示一个复杂的调控网络,特别是在水解性氮和有机质的动态变化方面(表 2)。这种交互作用暗示着不同作物间可能存在养分需求的互补效应^[16-18]。CCCF处理通过优化水分和养分的供应模式,创造更有利于维持养分平衡的土壤环境,从而为作物品质的稳定形成提供基础条件。

3.2 水肥管理和种植模式调控黄瓜和芹菜品质的生物过程

水肥管理和种植模式通过重塑微生物群落结构和调控关键功能菌群的丰度影响作物品质形成^[19-20]。其中,CCCF处理在维生素C积累方面表现出显著优势(表1),与其独特的微生物群落组成密切相关。已有研究^[21]表明,间作通过根系分泌物的互补效应,促进特异性微生物类群的富集。是因为不同作物的根系分泌物为特定微生物提供专一性碳源,从而塑造独特的微生物群落结构^[22]。值得注意的是,间作显著富集具有多重生态功能的促生菌,如参与有机质分解和养分转化的Steroidobacter^[23]、能分泌植物激素和铁载体的Flavobacterium^[24]及参与土壤碳氮循环的Nodosilinea_PCC-7104^[25]。在真菌方面,CCCF处理富集的外生菌根真菌通过扩大根系吸收面积,在养分吸收和品质形成中发挥重要作用^[26]。

从功能角度来看,间作条件增强的甲烷营养功能可能通过改善土壤通气性优化根际环境(图4b),而水肥管理影响的氮循环功能则直接调控氮素有效性(图

4a),进而影响维生素 C 等次生代谢物的合成[14,27-28]。 另外,AF处理中富集的植物内生菌可直接参与宿主 代谢过程(图 4c),产生多种生物活性物质,在调控果 实品质方面发挥重要作用[26]。

3.3 水肥管理和种植模式调控黄瓜和芹菜品质的微 生态过程

微生物网络分析揭示管理措施对土壤微生物群落互作模式的差异性调控效应^[29]。在水肥管理方面,CF处理下形成的紧密细菌网络结构(图5),这种特征可能促进群落成员间的物质和信息交换,有利于养分的高效循环和代谢产物的转化^[30-31]。相比之下,AF处理形成的高模块性网络结构(表4)。HERNANDEZ等^[32]指出,模块化的网络结构有利于形成功能专一的微生物亚群,提高群落对环境变化的适应能力。特别是其较短的平均路径长度可能促进群落内信息的快速传递(表4)。

在间作系统中,CC处理在细菌和真菌网络中均展现出显著的优化效应。细菌网络方面,CC处理的平均度和图密度明显高于单作处理CU和CE(表4),表明间作显著增强细菌群落成员间的互作强度。真菌网络同样呈现出较高的平均度和平均聚类系数,且保持适度的模块性,这种高连接性与模块化并存的平衡特征不仅有助于维持微生态系统的稳定性(表4),还可能通过优化养分循环网络来提升作物品质。反映CC处理在调控微生物群落功能方面具有独特优势。

因此,不同管理措施通过特异性的方式重塑微生物互作网络。水肥管理主要通过调节网络的结构特征(如紧密度,图5)来影响群落功能,而间作系统则通过同时优化细菌和真菌网络的互作强度(表4),构建更为稳定的微生态环境。这种微生物网络结构的优化调控为作物品质的提升提供微生态基础,同时也揭示不同管理措施通过重塑微生物互作网络,进而影响作物品质的作用机理。

4 结论

1)间作连续水肥(CCCF)是提升设施蔬菜品质的优效管理模式。该处理显著提高黄瓜和芹菜的维生素 C 质量分数(16.6%~200%),而单作连续水肥更有利于黄瓜可溶性糖的积累。

2)品质提升效应是通过土壤理化性质改善和微生物群落优化协同实现。在土壤理化层面,速效钾是调控维生素C积累的主导因子,而pH则显著影响可溶性糖的形成;在微生物群落层面,间作显著富集以Steroidobacter为代表的促生菌群,同时有效抑制

病原真菌的生长;在微生态系统层面,连续水肥处理 形成紧密的微生物互作网络,促进养分循环和代谢 产物的转化。

3)不同处理组合通过差异化的微生物网络结构 发挥调控作用。间作处理在保持较高连接性的同时 维持适度模块性,这种平衡的网络特征有利于维持 土壤微生态系统的稳定性。

参考文献:

- [1] ZENG D L, TIAN Z X, RAO Y C, et al. Rational design of high-yield and superior-quality rice [J]. Nature Plants, 2017, 3:e17031.
- [2] WANG G L, LI T, ZHOU Q X, et al. Characterization and environmental applications of soil biofilms: A review [J]. Environmental Chemistry Letters, 2024, 22 (4): 1989-2011.
- [3] 仝昊天,夏恩君,孙聪,等.设施农业发展对农业碳排放效率的影响研究[J].中国环境科学,2024,44(12):7079-7094.
 - TONG H T, XIA E J, SUN C, et al. Impact of facility agriculture development on agricultural carbon emission efficiency [J]. China Environmental Science, 2024, 44 (12):7079-7094.
- [4] 于淑慧,朱国梁,董浩,等.绿肥间作和滴灌对苹果园土壤肥力和果实品质的影响[J].土壤通报,2022,53(3):640-647.
 - YU S H, ZHU G L, DONG H, et al. Effects of intercropping green manure and drip irrigation on soil fertility and apple fruit quality in apple orchards [J]. Chinese Journal of Soil Science, 2022, 53(3):640-647.
- [5] 范虹,殷文,柴强.间作优势的光合生理机制及其冠层微环境特征[J].中国生态农业学报(中英文),2022,30 (11):1750-1761.
 - FAN H, YIN W, CHAI Q. Research progress on photophysiological mechanisms and characteristics of canopy microenvironment in the formation of intercropping advantages [J]. Chinese Journal of Eco-Agriculture, 2022, 30(11):1750-1761.
- [6] YUAN L, ZHANG Z C, CAO X C, et al. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation [J]. Field Crops Research, 2014, 155: 164-171.
- [7] 高翠民,王小非,党静,等.滴灌水肥一体化对潮土氨挥发及小麦产量的影响[J].中国土壤与肥料,2025(3):41-47.
 - GAO C M, WANG X F, DANG J, et al. Effects of drip irrigation on ammonia volatilization and wheat yield in fluvo-aquic soil[J]. Soil and Fertilizer Sciences in China,

- 2025(3):41-47.
- [8] DING K, ZHANG Y T, YRJÄLÄ K, et al. The introduction of *Phoebe bournei* into *Cunninghamia lanceolata* monoculture plantations increased microbial network complexity and shifted keystone taxa[J]. Forest Ecology and Management, 2022, 509; e120072.
- [9] 章家恩,高爱霞,徐华勤,等.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].应用生态学报,2009,20 (7):1597-1602.
 - ZHANG JI E, GAO A X, XU H Q, et al. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents [J]. Chinese Journal of Applied Ecology, 2009, 20(7):1597-1602.
- [10] 孙建好,赵建华,李伟绮,等.施氮对玉米||大豆间作产量稳定性的影响[J].中国生态农业学报(中英文),2025,33(6):1-8.
 - SUN J H, ZHAO J H, LI W Q, et al. The effect of nitrogen application on yield stability of maize||soybean intercropping systems [J]. Chinese Journal of Eco-Agriculture, 2025, 33(6):1-8.
- [11] 赵少官,张昂,董云萍,等.间作槟榔调控咖啡根际微生物群落结构及功能促进咖啡植株发育[J].中国科学:生命科学,2024,54(10):1974-1987.
 - ZHAO S G, ZHANG A, DONG Y P, et al. Intercropping with *Areca catechu* modulates rhizosphere microbial community structure and function to promote coffee plant development [J]. Scientia Sinica (Vitae), 2024, 54 (10): 1974-1987.
- [12] 中华人民共和国农业部. NY/T 1121.1—2006 土壤检测第1部分:土壤样品的采集、处理和贮存[S]. 北京:中国标准出版社,2006: 1-3.
 - Ministry of Agriculture of the People's Republic of China. NY/T 1121.1—2006 Soil Testing Part 1: Soil sampling, processing, and reposition[S]. Beijing: Standards Press of China, 2006: 1-3.
- [13] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:12-195.
 - LU R K. Methods for soil agro-chemistry analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000: 12-195.
- [14] HU W, COOMER T D, LOKA D A, et al. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves[J]. Plant Physiology and Biochemistry, 2017, 115: 408-417.
- [15] WANG C Y, ZHOU X, GUO D, et al. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China [J]. Annals of Microbiology, 2019, 69(13):1461-1473.
- [16] MA H F, EVANGELOU M W H, VONTOBEL P, et al. Root growth and Zn uptake of three common crop

- plants in response to heterogeneity in soil texture and Zn distribution[J]. Environmental and Experimental Botany, 2016, 127:45-54.
- [17] 季玉洁,万亚男,王琪,等.不同铁营养状况下根系特征及蒸腾对黄瓜幼苗吸收镉的影响[J].环境科学学报,2017,37(5):1939-1946.

 JI Y J, WAN Y N, WANG Q, et al. Effects of root characteristics and transpiration on cadmium uptake by cucumber seedlings under varied iron levels[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1939-1946.
- [18] WANG G L, YU G L, CHI T Y, et al. Insights into the enhanced effect of biochar on cadmium removal in vertical flow constructed wetlands [J]. Journal of Hazardous Materials, 2023, 443; e130148.
- [19] WU B B, WANG P, DEVLIN A T, et al. Influence of soil and water conservation measures on soil microbial communities in a citrus orchard of southeast China [J]. Microorganisms, 2021, 9(2): e319.
- [20] GONG X W, WANG X L, DANG K, et al. Nitrogen availability of mung bean in plant-soil system and soil microbial community structure affected by intercropping and nitrogen fertilizer [J]. Applied Soil Ecology, 2024, 203:e105692.
- [21] ANDERSON H M, CAGLE G A, MAJUMDER E L, et al. Root exudation and rhizosphere microbial assembly are influenced by novel plant trait diversity in carrot genotypes [J]. Soil Biology and Biochemistry, 2024, 197: e109516.
- [22] SHAPOSHNIKOV A I, BELIMOV A A, AZAROVA T S, et al. The relationship between the composition of root exudates and the efficiency of interaction of wheat plants with microorganisms[J]. Applied Biochemistry and Microbiology, 2023, 59(3):330-343.
- [23] SHTRATNIKOVA V Y, SCHELKUNOV M I, FOKINA V V, et al. Genome-wide transcriptome profiling provides insight on cholesterol and lithocholate degradation mechanisms in *Nocardioides simplex* VKM Ac-

- 2033D[J].Genes,2020,11(10):e1229.
- [24] JIC, LIUZY, HAOLP, et al. Effects of *Enterobacter cloacae* HG-1 on the nitrogen-fixing community structure of wheat rhizosphere soil and on salt tolerance [J]. Frontiers in Plant Science, 2020, 11:e1094.
- [25] STEWART K J, GROGAN P, COXSON D S, et al. Topography as a key factor driving atmospheric nitrogen exchanges in Arctic terrestrial ecosystems [J]. Soil Biology and Biochemistry, 2014, 70:96-112.
- [26] GUERRERO-GALÁN C, DELTEIL A, GARCIA K, et al. Plant potassium nutrition in ectomycorrhizal symbiosis: Properties and roles of the three fungal TOK potassium channels in *Hebeloma cylindrosporum*[J]. Environmental Microbiology, 2018, 20(5):1873-1887.
- [27] COLMER T D, GREENWAY H. Ion transport in seminal and adventitious roots of cereals during O₂ deficiency [J].Journal of Experimental Botany, 2011, 62(1):39-57.
- [28] 许振柱,周广胜.植物氮代谢及其环境调节研究进展 [J].应用生态学报,2004,15(3):511-516.

 XU Z Z, ZHOU G S. Research advance in nitrogen metabolism of plant and its environmental regulation [J]. Chinese Journal of Applied Ecology, 2004, 15 (3):511-516.
- [29] ZHANG Q, LIU H Y, LIANG Y Q, et al. The multifunctionality of soil aggregates is related to the complexity of aggregate microbial community during afforestation [J].Catena, 2024, 236:e107737.
- [30] RÖTTJERS L, FAUST K. From hairballs to hypotheses-biological insights from microbial networks [J]. FEMS Microbiology Reviews, 2018, 42(6):761-780.
- [31] LUPATINI M, SULEIMAN A K A, JACQUES R J S, et al. Network topology reveals high connectance levels and few key microbial Genera within soils[J].Frontiers in Environmental Science, 2014, 2:e10.
- [32] HERNANDEZ D J, DAVID A S, MENGES E S, et al. Environmental stress destabilizes microbial networks[J]. The ISME Journal, 2021, 15(6):1722-1734.