黄土丘陵沟壑区小流域侵蚀沟数量及形态特征

张 楠1,2,张 岩1,2,王佳希1,2,张子清1,2,王 文1,2

(1.北京林业大学水土保持学院,北京 100083;2.山西吉县森林生态系统国家野外科学观测研究站,山西 吉县 042200)

摘要:为分析黄土高原不同类型侵蚀沟形态特征及其区域差异,以黄土高原第一副区和第五副区小流域为例,基于无人机影像(0.15 m)及 DEM(1 m),分析沟谷网络特征和各类型侵蚀沟的数量特征,并对比冲沟和切沟的二维、三维形态参数。结果表明:丘一区小流域主沟支沟比为1:35.6,远小于丘五区小流域主沟支沟比(1:22.0),且各级沟谷密度多高于丘五区,表明丘一区支沟数量多,发育程度较高,地表更破碎,沟谷系统形态更复杂。丘一区和丘五区侵蚀沟类型都以切沟为主,密度分别为9.72,14.22 km/km²,冲沟密度分别为4.27.4.23 km/km²,冲沟数量虽少,但沟谷面积较大。切沟在沟谷网络分级中主要集中在1级,冲沟主要分布于1~3级,干沟多为3~5级。丘一区切沟除纵比降较大外,其他形态参数均明显小于丘五区,说明丘五区切沟规模更大,但两区冲沟形态差异较小。切沟、冲沟的体积和面积之间都具有显著的幂函数关系,但丘一区冲沟和切沟的判定系数更高,表明其同类侵蚀沟在形态上更具有相似性。研究结果为黄土高原侵蚀沟准确统计和小流域水土保持综合治理提供参考。

关键词:切沟;冲沟;形态参数;沟谷密度;黄土高原

中图分类号:S157.1 文献标识码:A 文章编号:1009-2242(2023)03-0109-07

DOI: 10.13870/j.cnki.stbcxb.2023.03.015

Quantity and Morphological Parameters of Gullies in Small Watersheds in the Hilly-gully Loess Plateau

ZHANG Nan^{1,2}, ZHANG Yan^{1,2}, WANG Jiaxi^{1,2}, ZHANG Ziqing^{1,2}, WANG Wen^{1,2}

(1.College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083;

2. Forest Ecosystem Studies, National Observation and Research Station, Jixian, Shanxi 042200)

Abstract: Taking two small watersheds in the first sub-zone (Zone-1) and the fifth sub-zone (Zone-5) of the Loess Plateau as examples and based on UAV image (0.15 m) and DEM (1 m), this paper aimed to analyze the characteristics of gully network, extract and analyze the quantitative characteristics of gullies as well as to compare morphological parameters of normal gullies and big gullies were based on random sampling. The results showed that: the gully channel system in Zone-1 is more complicate than that in Zone-5. The ratio of main gully channel to branches in the watershed in the first sub-zone was 1: 35.6, which was far larger than that in the fifth sub-zone (1: 22.0), and densities of channels in Zone-1 was higher than that in Zone-5. Normal gullies were dominant in both zones with density of normal gully was 9.72 km/km² in Zone-1 and 14.22 km/km² in Zone-5. The number of big gullies were less than normal gullies, with density was 4.27 km/km² in Zone-1 and 4.23 km/km² in Zone-5. Most of normal gullies were grade 1 of channels in both zones, big gullies were belong to grade 1~3, and dry channel were mostly grade 3~5. Except for longitudinal gradient, other morphological parameters of normal gullies in Zone-1 were all smaller than the counterparts in Zone-5, while there was no obvious differences in big gullies in the two zones. Significant power function relationship between the gully volume and area were found for both normal gullies and big gullies in both zones. However, higher determinant coefficients implied that the morphology is more similar for same type of gullies in Zone-1 than that in Zone-5. The results can provide reference for accurate statistics of erosion gullies in the Loess Plateau and comprehensive management of soil and water conservation in small watersheds.

Keywords: normal gully; big gully; morphological parameters; gully density; the Loess Plateau

黄土高原沟谷纵横,水土流失严重^[1],是生态建设与环境保护的重点区域之一。侵蚀沟在黄土高原分布广泛,形态复杂,是流域系统中最活跃的部分。根据第一次全国水利普查水土保持情况公报^[2],西北黄土高原区侵蚀沟道共计666719条,其中,黄土丘陵沟壑区侵蚀沟道共556425条,占83.46%。可见,黄土丘陵沟壑区沟道侵蚀尤为剧烈。

国内对黄土高原侵蚀沟的分类研究最早可追溯 到 20 世纪 50 年代[3],前人从侵蚀形态[4]、发育阶段 和演化过程[5]的角度对侵蚀沟的分类问题进行 深入探索,但受测量技术的限制,侵蚀沟的定义及划 分缺乏统一标准。相对来说,被广为接受的是陈永 宗[5]提出的分类方法,将黄河中游黄土丘陵区的侵蚀 沟分为浅沟、切沟、冲沟、干沟和河沟。其中,切沟和 冲沟的侵蚀过程[6]、治理和预防是沟蚀研究的重 点[7]。受地域差异性和监测手段的限制,只根据定 义及平面形态参数难以准确判别侵蚀沟类型,尤其 是切沟与冲沟的识别,一直是沟蚀研究的难点。任何 一个沟道流域都是一个完整的系统[5],沟谷网络是 沟道系统的基本骨架,沟谷网络中包含大量对侵蚀沟 分布有指示作用的信息,借助沟谷网络辅助识别沟 谷类型具有一定的科学性。通过研究流域内不同类 型侵蚀沟的数量和比例关系,可以为侵蚀沟的科学 防治提供重要依据。随着测绘技术的不断发展,侵蚀 沟的提取和监测方式不断改进。无人机(unmanned aerial vehicle, UAV) 摄影测量是近年来发展的热点, 凭借灵活性高、获取数据分辨率高等特点[8-9],为自

动提取侵蚀沟^[10],构建高精度地形模型^[11]等研究提供优质数据源。

选择黄土丘陵沟壑区 2 个典型小流域,以无人机影像(0.15 m)及其生成的地形数据(1 m)为基础,借助沟谷网络辅助识别流域内不同类型的侵蚀沟,重点选择侵蚀严重的切沟和冲沟,计算其二维、三维参数,分析黄土丘陵沟壑区第一副区与第五副区侵蚀沟数量及形态参数差异,为黄土高原侵蚀沟准确统计和小流域水土保持综合治理提供参考。

1 材料与方法

1.1 研究区概况

考虑到地貌代表性,选取陕西省绥德县的王茂沟 小流域和定边县的白草峁小流域为研究区(图 1)。 绥德县属于黄土丘陵沟壑区第一副区,温带大陆性半 干旱季风气候,多年平均气温为 9.7 ℃,多年平均降水量 为 486 mm,降水季节分布不均,7—9 月占全年降水的 60%以上,主要土壤类型为黄土性土壤。王茂沟小流域 (37°33′—37°38′N,110°16′—110°26′E)位于绥德县 韭园沟乡,流域面积 5.97 km²,植被以灌木和草本为 主,经过长期治理,坡耕地大幅减少,植被覆盖度较 高[12]。定边县属于黄土丘陵沟壑区第五副区,温带 大陆性半干旱季风气候,多年平均气温在 7.9 ℃,年 平均降水量为316.9 mm,四季降雨分布不均,主要集 中在7-9月,主要土壤类型为黄土性土壤。白草峁 小流域(37°05′—37°19′N,107°46′—108°16′E)位于 定边县杨井镇,流域面积约为 3.26 km²,植被以草本 植物为主,零星分布小灌木,撂荒耕地面积较大。

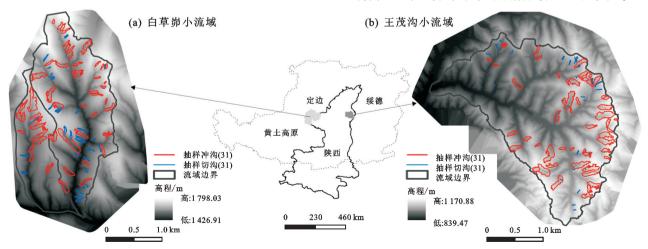


图 1 研究区位置和抽样侵蚀沟分布

1.2 数据来源

本研究所用到的无人机测量数据分别拍摄于 2021 年 4 月 25 日和 5 月 1 日,使用 DJI 大疆悟 Inspire 2 无人

机搭载 X4 云台相机进行拍摄,像素数5 280×2 972,拍 摄时选择晴朗无风或微风天气,以保证充足的日照采光 条件和飞行稳定性。无人机在 500 m 标准飞行高度下, 设置纵向重叠率为80%,横向重叠率为70%。使用Pix4Dmapper无人机影像处理软件对无人机航拍照片进行拼接,经过图像预处理、空中三角测量、正射镶嵌三部分,得到分辨率约为0.15 m的数字正射影像(DOM)和数字表面模型(DSM),通过点云滤波去除植被干扰,得到分辨率为1 m的数字高程模型(DEM)。坐标系采用WGS_1984_UTM_Zone_49N,高斯一克吕格投影。

1.3 沟谷系统分类方法

在黄土沟谷系统中,发育着不同形态和规模的侵

蚀沟^[13],这些形态各异的侵蚀沟看似杂乱无序,但实际遵循一定的结构规律。沟谷网络是沟谷系统的基本骨架,借助沟谷网络辅助识别沟谷类型。首先基于DEM数据,通过设置较小汇流累计阈值(50 m²),保证尽可能提取出小流域内所有的汇水网络;然后,通过剔除伪沟谷对沟谷网络进行修正;最后主要参照陈永宗^[12]的沟谷类型划分方法,确定判别指标(表 1),利用目视解译法提取 2 个小流域内的浅沟、切沟、冲沟和干沟^[5],悬沟是切沟的一种特殊形式,因此,统一归为切沟。

表 1 浅沟、切沟、冲沟和干沟的判别指标

侵蚀沟类型	发生位置	断面形态	切割深度	切割宽度
浅沟	发生在沟间地集水区中部低洼 的积水通道上 ^[14]	横断面一般呈宽浅形,沟头和沟壁不明显[14]	一般深人犁底层 20 cm ^[3]	约 30~50 cm ^[3]
切沟	一般发生在凹形斜坡 ^[13] ,有很大集水面积的集水区下部 ^[14]	横断面呈"V"形,沟头和沟壁明显,纵剖面与 所在坡面一致 ^[12]	一般切破犁底层,深人成土母质甚至 疏松基岩,深度超过 50 cm ^[13]	超过 50 cm ^[15]
冲沟	位于沟间地和沟谷地之间的沟 缘线附近 ^[5]	横断面呈"V"形 ^[13] ,纵剖面与所在坡面不一致,呈凹弧状 ^[12]	40∼80 m ^[13]	一般十几米到几十米宽[16]
干沟	主要分布在河间地[5]	横断面呈"V"形,两侧有洪积和坡积缓坡地, 无常流水 ^[12]	一般几十米到几百米[5]	一般几十米到几百米宽[5]

1.4 侵蚀沟形态参数的提取

- (1)侵蚀沟数量的确定。基于提取的沟谷网络,参照 Straler 河网分级法^[17],将没有支沟的侵蚀沟设为1级,当相同级别的侵蚀沟交汇时等级升高1级,级别不同的侵蚀沟交汇时等级为二者中的较高者,依次类推,统计不同类型不同级别侵蚀沟的数量。
- (2)主沟支沟比。流域内主沟道的长度和总沟道 长度的比值,从沟长角度体现支沟发育程度的指标, 也能间接反映流域沟蚀程度。其数学表达式为:

$$R = \frac{L}{\sum_{i=1}^{M} \text{Length}_i}$$
 (1)

式中:R 为主沟支沟比(%);L 为主沟道长度(km);M 为侵蚀沟长度的全部统计单元;Length;Len

(3)侵蚀沟密度。与沟谷密度类似,是单位面积内侵蚀沟沟长的总和,能够反映小流域沟蚀严重程度和地形破碎程度,是地貌、土壤、植被等多种因素综合作用通过沟道系统体现出的结果[18]。其数学表达式为:

$$D = \frac{L}{S} \tag{2}$$

式中:D 为侵蚀沟密度 (km/km^2) ;L 为流域内所有侵蚀 沟的长度总和(km);S 为研究区域面积 (km^2) 。

(4)侵蚀沟形态参数提取。在 2 个小流域选取河 网级别相同的冲沟和切沟各 31 条,抽样考虑的主要 因素有:①样本数>30,满足大样本的条件;②抽样冲沟和切沟分属相同的河网级别;③空间分布尽可能均匀;④无人机影像质量清晰,沟底植被较少且生成的 DEM 质量较高。基于无人机影像和沟谷网络,通过目视解译勾绘小流域中冲沟和切沟的二维边界,基于 DEM 和无人机影像量取每条侵蚀沟的沟长、沟宽和沟深,计算平均沟宽、截面面积、纵比降(沟深与沟长之比)和宽深比。

根据李镇等[19]研究方法,基于 DEM 计算每条切沟、冲沟的体积。①利用切沟、冲沟的二维边界裁剪填洼处理好的 DEM,得到切沟和冲沟的数字高程模型(DEM);②将二维边界对应的线图层转化为点图层并设置相应的高程值,生成未发生侵蚀的原始坡面(DEM₀),其栅格大小为 $1 \text{ m} \times 1 \text{ m}$;③利用 ArcMap 10.2 软件中的 Surface Volume 工具,根据 DEM 和 DEM₀计算 V_{DEM} 和 V_{DEM0} ,最终得到侵蚀沟的体积为:

$$V = V_{\text{DEM}} - V_{\text{DEM}_0} \tag{3}$$

式中:V 为侵蚀沟体积(m^3); V_{DEM} 为侵蚀沟 DEM 体积(m^3); V_{DEM0} 为原始侵蚀基准面体积(m^3)。

2 结果与分析

2.1 侵蚀沟数量特征

由图 2 可知,按沟谷系统分类方法对王茂沟与白草峁 2 个小流域统计结果。王茂沟小流域 1~6 级沟道数量分别为 911,151,44,13,5,1,白草峁小流域

1~6级沟道数量分别为 581,127,26,8,3,1。王茂沟 小流域的主沟支沟比(1:35.6)小于白草峁小流域 (1:22.0),计算 2个小流域各级别沟谷密度发现,王 茂沟小流域各级别沟谷的密度大多高于白草峁小流 域,进一步说明,丘一区小流域不仅支沟数量多,支沟 的发育程度也较高,地表更破碎,沟谷系统形态表现 出更复杂的特点。王茂沟小流域共有切沟 955 条,冲 沟 144 条,干沟 26 条,分别占沟谷总数量的 84.90%, 12.80%,2.31%,密度分别为 9.72,4.27,2.36 km/km²。白 草峁小流域共有切沟 653 条,冲沟 85 条,干沟 8 条, 分别占总数量的 87.53%,11.40%,1.07%,密度分别 为 14.22,4.23,1.78 km/km²(表 2)。总体来说,丘一区和丘五区侵蚀沟类型都以切沟为主,冲沟数量相对较少,干沟数量最少,具体来看,切沟在河网分级中主要集中在 1 级,冲沟主要分布于 1~3 级,干沟多为 3~5 级。河网级别为 1 级的切沟属于沟蚀发展过程中的新沟道,大多处于发育的异常活跃阶段,沟道形态极不稳定。因此,需要特别重视丘一区小流域支沟的治理。此外,从级别上分析,除干沟和切沟的沟谷级别具有明显差异外,切沟和冲沟、冲沟和干沟的沟谷级别均存在重合,间接说明识别沟道系统内相邻类型的侵蚀沟比较困难。

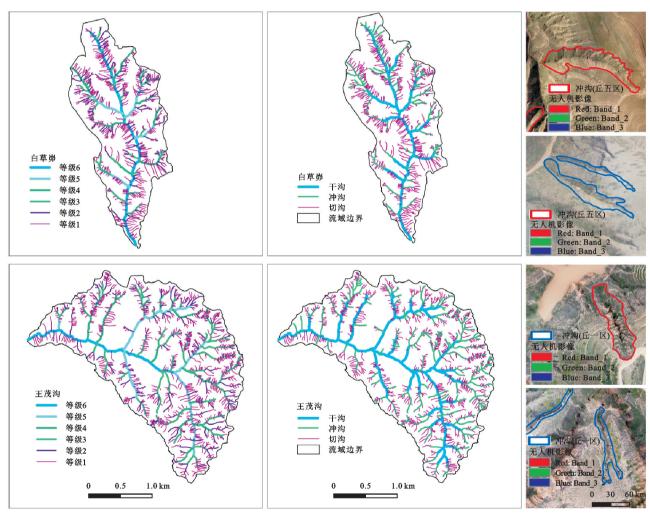


图 2 丘一区与丘五区河网分级和侵蚀沟分类

2.2 冲沟和切沟形态特征分析

在王茂沟和白草峁小流域内抽取分布最广的,河网级别为2级的冲沟(以下简称2级冲沟)和1级的切沟(以下简称1级切沟)各31条,分别计算沟道长度及面积(表3)。王茂沟小流域冲沟和切沟沟长均值分别为188.03,63.43 m,白草峁小流域冲沟和切沟沟长均值分别为181.07,121.32 m。王茂沟小流域冲沟和切沟沟道面积占比分别为96.55%,3.45%,白草峁小流域冲沟和切沟沟道面积占比分别为80.77%,

19.23%。丘一区与丘五区冲沟的长度和面积都呈现出远大于切沟长度和面积的特点,丘五区1级切沟的长度和面积大于丘一区1级切沟的长度和面积,而丘五区2级冲沟的长度和面积小于丘一区2级冲沟的长度和面积。由此可知,丘五区切沟数量虽比丘一区少,但是,切沟的规模大于丘一区,而冲沟规模则小于丘一区。总体来看,2个小流域冲沟数量虽然都少于切沟数量,但冲沟的影响面积较大,因此,对冲沟侵蚀的监测研究不可忽视。

侵蚀沟 -		王茂沟				白草峁			
		沟道级别	长度/	总数量		沟道级别	长度/	侵蚀沟密度/	
	总数量	(占比%)	$_{ m km}$		忠	(占比%)	$_{ m km}$	$(km \cdot km^{-2})$	
切沟	0.5.5	1级(91.00)	48.65	8.15	653	1级(86.98)	36.99	11.35	
	955	2级(9.00)	9.39	1.57		2级(13.02)	9.35	2.87	
冲沟		1级(29.17)	4.17	0.70	85	1级(15.30)	1.39	0.43	
		2级(45.14)	10.33	1.73		2级(49.41)	5.34	1.64	
	144	3级(25.69)	10.98	1.84		3级(29.41)	4.78	1.47	
		4级(0)	0	0		4级(5.88)	2.26	0.69	
干沟		3级(26.92)	2.02	0.34	8	3级(12.50)	0.39	0.12	
		4级(50.00)	4.56	0.76		4级(37.50)	0.92	0.28	
	26	5级(19.23)	4.77	0.80		5级(37.50)	1.50	0.46	
		6级(3.85)	2.74	0.46		6级(12.50)	2.99	0.92	

表 2 小流域侵蚀沟数量统计

注:括号内数据为占比(%)。下同。

表 3 丘一区与丘五区抽样沟道长度、面积统计

侵蚀沟 类型 (样本数)	王茂沟			白草峁					
	沟长		面	面积		沟长 面积		面积	
	均值/m	标准差	均值/m²	标准差	总和(占比/%)	均值/m	标准差	均值/m² 标准	差 总和(占比/%)
切沟(31)	63.43	32.63	344.62	335.40	0.01(3.45)	121.32	48.49	1599.93 1285	.46 0.05(19.23)
冲沟(31)	188.03	84.55	9011.03	6920.71	0.28(96.55)	181.07	69.85	6698.54 4219	.06 0.21(80.77)

注:表中抽样切沟均为1级切沟,抽样冲沟均为2级冲沟。

由冲沟与切沟形态参数分布范围(图 3)可知,王 茂沟小流域的切沟除纵比降大于冲沟外,其他形态参 数均小于冲沟。与此不同的是,白草峁小流域的切沟 和冲沟的沟深并没有显著差异。表明从切沟到冲沟 的演化,丘一区王茂沟小流域二维、三维形态参数都 增加;而丘五区白草峁小流域仅二维形态参数增加。 2个小流域从切沟到冲沟,纵比降都减缓。王茂沟小 流域切沟除纵比降大于白草峁小流域,沟长和沟深均显著小于白草峁小流域。除沟宽和截面面积以外,2个小流域冲沟的沟长、沟深等参数都没有显著差异,表明丘一区切沟二维、三维形态参数均明显小于丘五区。丘一区冲沟以沟壁扩宽为主,发育程度比丘五区略高,但总体来说,两区冲沟的形态差异较小,可能是冲沟处于沟蚀发育的较稳定阶段,形态相对稳定。

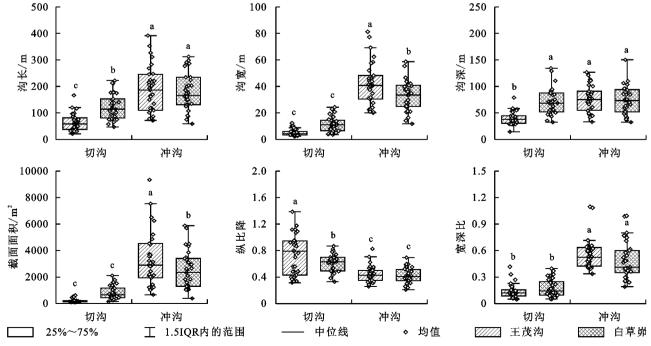


图 3 冲沟和切沟形态参数

2.3 冲沟和切沟 V-A 关系的区域差异

已有研究^[18]表明,黄土高原丘陵沟壑区的切沟体积(V)和面积(A)具有较好的幂函数关系:

$$V = aA^b \tag{4}$$

式中:V 为切沟体积(m^3);A 为切沟面积(m^2);a、b 均为待定系数。基于 DEM 提取的冲沟和切沟参数,分别拟合王茂沟小流域和白草峁小流域冲沟和切沟的 V—A 幂函数模型(图 4)。以往研究[20] 表明,b 值可以看作单位侵蚀沟面积上沟深的增长率,能够反映环境的脆弱性。在切沟的 V—A 模型中,b 值为 1.097~1.381[21],冲沟的 b 值略大于切沟 V—A 模型

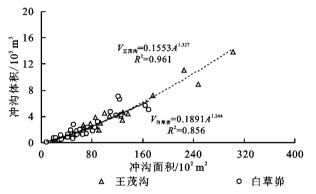
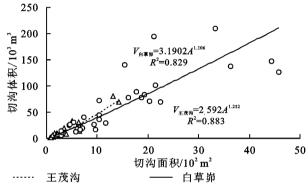


图 4 2 个研究区冲沟和切沟体积一面积(V-A)关系


3 讨论

对于侵蚀沟的分类问题,受地域差异性的限制, 不同学者有着不同的判别标准。尤其是判别冲沟和 切沟的。难点在于切沟外表形态差异较大,根据分支 状况可分为线型、沟头扩展型、沟头分支型和沟底分 支型[23],对解译者经验要求较高。此外,侵蚀沟的发 育并不是完全连续的,黄土坡面上会出现独立分布的 沟,如悬沟、陷穴[24],关于悬沟的定义和分类目前仍 有分歧。河网是河流系统中所有干流、支流的组合, 沟谷网络中包含大量不同类型侵蚀沟分布的信息,对 冲沟和切沟的识别具有较好的指示作用。从沟谷网 络的视角分析小流域内各种侵蚀沟的比重,有利于准 确统计各类侵蚀沟的数量,对于掌握侵蚀沟空间分布 特征,加强沟蚀治理具有重要的参考价值。力图解决 冲沟和切沟的识别问题,但受数据的限制,仅对丘一 区和丘五区的冲沟、切沟展开分析,黄土高原其他副 区是否适用还有待进一步探索。

4 结论

(1)丘一区王茂沟小流域切沟、冲沟、干沟的数量分别占沟谷总数量的84.90%,12.80%,2.31%,丘五区白草峁小流域切沟、冲沟、干沟的数量分别占总数量的87.53%,11.40%,1.07%。2个区域侵蚀沟类型都以切沟为主,冲沟数量相对较少,但沟谷面积较大。

的b值[22]。2个小流域内切沟和冲沟的b值范围与前人[23]研究一致,两区切沟的b值均小于冲沟的b值,说明冲沟单位面积的沟深增长率更大。丘一区冲沟和切沟的b值都大于丘五区,说明单位面积上沟深增长率也高于丘五区,冲沟和切沟的下切深度都更大,下切侵蚀更活跃,更容易发生侵蚀。另外,切沟和冲沟的V-A模型都具有较高判断系数 R^2 ,说明面积和体积的关系密切。同时,丘一区冲沟和切沟V-A模型的判定系数都高于丘五区,说明丘一区冲沟和切沟在各自的形态上更具有相似性,发育更为成熟。

丘一区小流域主沟支沟比(1:35.6)小于丘五区小流域主沟支沟比(1:22.0),且各级别沟谷的密度大多高于丘五区,丘一区支沟不仅数量多,支沟的发育程度也较高,地表更破碎,沟谷系统形态更复杂。

(2)丘一区和丘五区侵蚀沟类型都以切沟为主,密度分别为 9.72,14.22 km/km²,冲沟密度分别为 7.83, 2.94 km/km²,冲沟数量虽少,但沟谷面积较大。切沟在河网分级中主要集中在 1 级,冲沟主要分布于 $1\sim3$ 级,干沟多为 $3\sim5$ 级。

(3)丘一区和丘五区切沟形态差异显著,丘一区 切沟除了纵比降较大外,其余二维、三维形态参数均 明显小于丘五区。两区冲沟相对处于沟蚀发育的较 稳定阶段,形态差异较小。两区切沟、冲沟的体积和 面积之间都具有显著的幂函数关系,但丘一区冲沟和 切沟的判定系数更高,表明其同类侵蚀沟在形态上更 具有相似性,发育更为成熟。

参考文献:

- [1] 景可.黄土高原沟谷侵蚀研究[J].地理科学,1986(4): 340-347.
- [2] 中华人民共和国水利部.第一次全国水利普查水土保持情况公报[J].中国水土保持,2013(10):2-3,11.
- [3] 朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4 (2):99-115.
- [4] 甘枝茂.从黄土地貌的发育中认识黄土高原的土壤侵蚀

- 及其防治[J].水土保持通报,1982(1):6-10.
- [5] 陈永宗.黄河中游黄土丘陵区的沟谷类型[J].地理科学, 1984(4):321-327.
- [6] Yuan M T, Zhang Y, Zhao Y Y, et al. Effect of rainfall gradient and vegetation restoration on gully initiation under a large- scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China[J]. Science of the Total Environment, 2020, 739:e140066.
- [7] Frankl A, Nyssen J, Vanmaercke N, et al. Gully prevention and control: Techniques, failures and effectiveness [J]. Earth Surface Processes and Landforms, 2021, 46(1):220-238.
- [8] Eltner A, Baumgart P, Maas H G, et al. Multi-temporal UAV data for automatic measurement of rill and interrill erosion on loess soil[J]. Earth Surface Processes and Landforms, 2015, 40(6):741-755.
- [9] Neugirg F, Kaiser A, Schmidt J, et al. Quantification, analysis and modelling of soil erosion on steep slopes using LiDAR and UAV photographs[J]. Proceedings of the International Association of Hydrological Sciences, 2015, 367:51-58.
- [10] Liu K, Ding H, Tang G A, et al. An object-based approach for two-level gully feature mapping using high-resolution DEM and imagery: A case study on hilly loess plateau region, China[J].Chinese Geographical Science, 2017, 27(3):415-430.
- [11] 冯林,李斌兵.利用无人机倾斜影像与 GCP 构建高精度侵蚀沟地形模型[J].农业工程学报,2018,34(3):88-95.
- [12] 刘宝元,杨扬,陆绍娟.几个常用土壤侵蚀术语辨析及 其生产实践意义[J].中国水土保持科学,2018,16(1): 9-16.

- [13] 罗来兴.划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J].地理学报,1956(3):201-222.
- [14] 郑粉莉,徐锡蒙,覃超.沟蚀过程研究进展[J].农业机械 学报,2016,47(8):48-59,116.
- [15] 张光辉,杨扬,符素华,等.切沟侵蚀预报研究进展与展望[J].地球科学进展,2022,37(6):551-562.
- [16] 刘元保,朱显谟,周佩华,等.黄土高原坡面沟蚀的类型及其发生发展规律[J].中国科学院西北水土保持研究所集刊,1988(1);9-18.
- [17] Strahler A N. Hypsometric (area-altitude) analysis of erosional topology [J]. Geological Society of America Bulletin, 1952, 63(11):1117-1142.
- [18] Valentin C, Poesen J, Li Y. Gully erosion: Impacts, factors and control[J].Catena,2005,63(2/3):132-153.
- [19] 李镇,张岩,尚国琲,等.晋西黄土区切沟断面特征及体积估算模型[J].农业工程学报,2018,34(6):152-159.
- [20] Frankl A, Poesen J, Scholiers N, et al. Factors controlling the morphology and volume (V)-length (L) relations of permanent gullies in the Northern Ethiopian Highlands [J]. Earth Surface Processes and Landforms, 2013, 38(14):1672-1684.
- [21] Li Z, Zhang Y, Zhu Q K, et al. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau[J].Geomorphology,2015,228:462-469.
- [22] 张岩,高驰宇,杨瑾,等.基于历史卫星影像估算黄土丘 陵区冲沟发育速率[J].农业工程学报,2022,38(1): 109-116.
- [23] 赵影,董爽,贾玉华.陕北六道沟流域切沟形态复杂性及其 类型划分[J].干旱区研究,2019,36(5):1292-1299.
- [24] 苏旭,黄骁力,王春,等.基于深度学习与融合地形特征的黄土陷穴面向对象提取方法[J].农业工程学报,2022,38(1):102-110.