模拟降雨下前期含水量对黄绵土坡面产流产沙过程的影响

淡彩虹1,许欢欢1,王兵1,2,张慧妮1,李家明2,马金龙1

(1.西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,

陕西 杨凌 712100;2.中国科学院大学,北京 100049)

摘要:为探究不同前期土壤含水量条件下坡面产流产沙特征及产流产沙关系,以安塞黄绵土为研究对象,通过设置6个前期土壤含水量处理(5%,10%,15%,20%,25%,30%),采用室内人工模拟降雨试验来系统研究前期土壤含水量对坡面产流产沙过程的影响。每个含水量处理设置2个重复,坡面坡度为15°,设计雨强为90 mm/h,降雨历时为1h。结果表明:(1)随着前期土壤含水量的升高,坡面初始产流时间幂函数减小,产流量线性增大。(2)坡面土壤流失量随前期土壤含水量增大呈幂函数增加,高含水量组(29.3%)土壤流失量分别是低含水量组(5.8%和10.6%)和中含水量组(15.3%,20.4%,25.1%)的86.1,8.9倍。当前期含水量接近饱和时,坡面侵蚀加剧,土壤流失量迅速增加。(3)不同前期土壤含水量条件下坡面产流量与产沙量呈幂函数关系,当产流速率超过1.4 L/min,产沙量迅速增加甚至翻倍,呈"水大沙多"的特点。前期土壤含水量通过影响入渗产流和改变径流泥沙关系双重作用来影响坡面产沙。因此,对黄绵土坡面而言,应注意防范连绵持久降雨后暴雨或特大暴雨所造成的水土流失问题,可采取耕作、植被覆盖等措施维持适当土壤含水量使土层不饱和来减少侵蚀。研究结果为黄土高原水土资源保护和管理提供科学依据。

关键词:前期土壤含水量;产流产沙;产流产沙关系;初始产流时间;黄绵土

中图分类号:S157.1 文献标识码:A 文章编号:1009-2242(2023)01-0031-06

DOI:10.13870/j.cnki.stbcxb.2023.01.005

Effect of Antecedent Soil Moisture on Runoff and Sediment Yield on Loess Slope Under Simulated Rainfall

DAN Caihong¹, XU Huanhuan¹, WANG Bing^{1,2}, ZHANG Huini¹, LI Jiaming², MA Jinlong¹

(1.State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100; 2.University of Chinese Academy of Sciences, Beijing 100049)

Abstract: In order to explore the characteristics of runoff and sediment yield and the relationship between runoff and sediment yield on the slope under different antecedent soil moisture conditions, this paper took Ansai loessial soil as the research object, and systematically studied the influence of antecedent soil moisture on runoff and sediment on slope by setting six antecedent soil moisture treatments (5%, 10%, 15%, 20%, 25%, 30%). Two repetitions were set for each water content treatment, the slope gradient was 15° , the rainfall intensity were set to 90 mm/h, and the rainfall duration was set to 1 hour. The results showed that: (1) With the increase of antecedent soil moisture, the initial runoff time decreased as a power function, and the runoff increased linearly. (2) The amount of soil loss on the slope increased as a power function with the increase of antecedent soil moisture. The amount of soil loss in the high antecedent soil moisture group (29.3%) was 86.1 and 8.9 times that in the low water content group (5.8% and 10.6%) and the medium water content group (15.3\%, 20.4\% and 25.1\%). When antecedent soil moisture was close to saturation, the slope erosion intensified and the amount of soil loss increased rapidly. (3) Under the conditions of different antecedent soil moisture, the relationship between slope runoff and sediment yield was a power function. When the runoff yield rate exceeded 1.4 L/min, the sediment yield increased rapidly or even doubled, showing the characteristics of "large water and more sediment". Antecedent soil moisture affected slope sediment yield by affecting infiltration runoff and changing the relationship between runoff and sediment. Therefore, for the loess slope, attention should be paid to preventing soil erosion caused by rainstorm or

收稿日期:2022-05-23

资助项目:中国科学院"西部之光"西部青年学者 A 类项目(XAB2019A04);国家自然科学基金项目(42130717)

第一作者:淡彩虹(1998—),女,硕士研究生,主要从事土壤侵蚀研究。E-mail:danch113@163.com

通信作者:王兵(1982—),男,博士,研究员,博士生导师,主要从事植被恢复与土壤侵蚀研究。E-mail:bwang@ms.iswc.cn

extreme rainstorm after continuous and lasting rainfall. Measures such as cultivation and vegetation cover can be taken to maintain appropriate soil water content and make the soil layer unsaturated to reduce erosion. The results provide a scientific basis for the protection and management of soil and water resources in the Loess Plateau.

Keywords: antecedent soil moisture; runoff and sediment yield; water-sediment relationship; initial runoff time; loessial soil

土壤水分作为联系地表水和地下水的纽带,既是 水资源形成、转化与消耗过程的必要部分,又是坡面 土壤侵蚀过程中不容忽视的控制因子[1-2]。因此,必 须考虑土壤水分对径流和土壤侵蚀的影响,尤其是在 水资源短缺的半干旱环境中[3]。黄土高原地处干旱 半干旱区,降水量少且年内年际分配不均,遇暴雨便 极易产生严重水土流失。前期土壤含水量作为影响 坡地降雨入渗、产流和产沙过程的关键因子,一直以 来都是土壤侵蚀研究中的重要内容[4-5]。前期土壤含 水量通过影响降雨入渗和径流分配,从而影响土壤侵 蚀[6-7]。前期含水量的升高使土壤吸湿性有所降低, 在长时间湿润状态下,土壤颗粒吸水膨胀、颗粒间空 隙缩小,产流过程随之发生变化[8]。积水入渗过程 中,前期土壤含水量越高,初始入渗速率越低[9];另一 方面,前期含水量的差异使土壤颗粒间黏结力和团聚体 稳定性不尽相同,影响土壤的抗侵蚀能力[10]。Luk[11]研 究发现,粉壤土从风干到饱和,土壤流失量增加5倍。 这与国内主流研究结果一致,即前期土壤含水量越 大,片蚀发展成细沟侵蚀的时间越短,土壤流失量随 之增加[12-13],但也有研究[14-16]得出不同结论。Bochet 等[15]发现,土壤流失速率在土壤较湿润时反而更低, 也有研究[16]发现,径流量和泥沙量的最大值分别出 现在最低前期土壤含水量(4%)和中等前期土壤含水 量(12%),而前期含水量最高时(19%)却未产生径流 和泥沙。在通用土壤流失方程(USLE)和修正后的 通用土壤流失方程(RUSLE)这2个侵蚀预报模型 中,前期土壤含水量都发挥着较为重要的作用[17-18]。 前期土壤含水量通过影响植被覆盖和管理因子(C因 子)来影响侵蚀模型的构建,尤其 RUSLE 模型中计 算土壤流失率所考虑的次因子之一便是土壤水分,但 因未构建前期土壤含水量与土壤侵蚀之间的量化关 系,相关因子的计算参数大多仍需依赖野外定点观测 的经验统计而获取。尽管 2 种模型均考虑前期土壤 含水量这一影响侵蚀的重要因素,但相关定量研究仍 有所欠缺。另前期含水量与土壤性质间交互作用的 复杂性使前期土壤含水量影响土壤侵蚀的作用机制 尚未完全弄清。基于此,本文以黄土高原分布面积最 广的黄绵土为研究对象,通过人工模拟降雨试验,定 量探究前期土壤含水量对坡面产流产沙特征及产流 产沙关系的影响,以期为黄土高原水土资源保护和管

理提供科学依据,并为土壤侵蚀模型的构建提供借鉴 和数据支撑。

1 材料与方法

1.1 试验装置与材料

试验于 2020 年 8—9 月在黄土高原土壤侵蚀与旱地农业国家重点实验室人工模拟降雨大厅进行。模拟降雨使用 QYJY-503 固定式人工降雨设备,此设备为组合式喷头,安置高度为 18 m,降雨强度可调范围为 30~300 mm/h,雨滴大小控制在 0.4~6.0 mm,降雨均匀度>80%,雨滴终点速度接近于天然降雨。试验土壤采自陕西省延安市安塞区坡耕地表层土壤(0—20 cm),去除石块和植物根系等杂物后过 2 mm 孔筛网,风干、均匀混合后备用。依照我国土壤颗粒分级标准,供试黄绵土的砂粒、粉粒和黏粒含量分别为 20.80%,63.45%,15.74%。试验土槽为自制移动式变坡度钢槽,坡度变化范围为 0~30°,土槽长为 200 cm,宽为 50 cm,高为 50 cm。

1.2 试验设计

黄土高原气候干旱且降水季节性明显,土壤水分变化区间往往较大。旱季长期缺水时表层土壤极为干燥,而雨季连绵多雨又使土壤充分湿润且含水量很高。因此,本研究以凋萎系数和饱和含水量作为参考,对安塞黄绵土从风干到饱和状态设置6个梯度的前期土壤含水量(质量含水量)处理,分别为5%,10%,15%,20%,25%,30%,每个处理设置2个重复。坡度设为15°。由于暴雨是造成黄土区水土流失的主要降雨类型,故设计雨强为90 mm/h。

1.3 试验过程

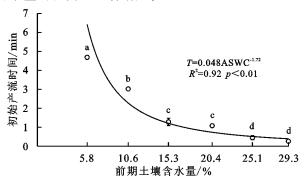
1.3.1 前期土壤含水量的控制和土槽填装 为获取试验所需不同前期含水量的土料,试验需严格按照供试土壤初始含水量及试验设计含水量来计算所需要的补给水量,后均匀铺开供试土料,用喷水壶均匀地向土料喷洒计算出的所需固定补水量,充分拌匀后装进大桶,密封存放并静置 24 h。依照此法,便可制备出含水量均匀分布且达到试验控制要求的土壤。当土壤含水量较高时,人工填土过程中往往会结成泥块,影响试验进行。为获得试验所需较高含水量的土料,先用含水量为 20%的土料填装土槽,后从上层均匀缓慢持续喷水,补水过程中在土壤表层铺 1 层湿棉布,保证水分均匀下渗且不形成物理结皮,直至一定

补水量喷洒完毕,并立即用塑料布覆盖土槽。

填装土槽尽量在阴天进行,以减少填土过程中的水分蒸散,避免前期土壤含水量的大幅度变化。填土时先在试验土槽底部填装 10 cm 厚的细砂并以粗棉纱布隔开土和砂,来保证土壤水分均匀下渗;之后控制容重 1.2 g/cm³分 4 层填装前述制备好的不同前期含水量土料,边填充边压实,每层填土 10 cm,填土总厚度 40 cm。填装下层前将表土打毛,消除土层间的分层现象。填土完毕后,需以塑料布覆盖土槽,避免降雨试验前表层土壤含水量的大幅度变化。

1.3.2 降雨试验与样品收集 降雨开始前,测得 6 个处理的前期土壤含水量分别为 5.8%,10.6%,15.3%,20.4%,25.1%,29.3%。考虑到黄土区暴雨一般具有强度大、历时短的特点,各处理降雨历时设为 60 min。模拟降雨开始后,雨滴到达土壤表层后开始计时,坡面产流后立即记录初始产流时刻,且每 1 min 用塑料小桶收集 1 次径流泥沙并测定 1 次表面流速和水温。降雨结束后称量塑料桶中径流泥沙样,后静置澄清,待泥沙完全沉淀后小心倒掉上层清液,将剩余泥沙样液转移至铝盒内,放入烘箱于 105 ℃完全烘干后测定泥沙质量,并计算径流量。

1.3.3 数据处理 采用 Excel 2019 和 SPSS 25 软件 对试验数据进行统计和分析,并用 Origin 2021b 软件进行图表绘制。

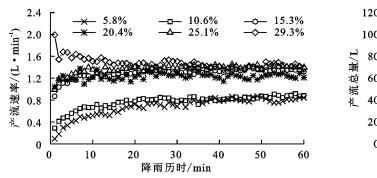

2 结果与分析

2.1 前期土壤含水量对坡面产流过程的影响

2.1.1 坡面初始产流时间 坡面初始产流时间是反 映产流前坡地土壤物理状况的重要指标,裸露坡地的 初始产流时间随前期土壤含水量的变化反应极其明 显[4]。当其他条件保持一致,只改变前期含水量的情 况下,坡面初始产流时间便表现不同(图 1)。在 6 种 前期土壤含水量下,坡面初始产流时间分别为 4.69, 3.03,1.29,1.09,0.46,0.27 min,且 29.3%含水量坡面 较 5.8%含水量坡面提前 4.42 min 产流。随着前期 土壤含水量的提高,坡面初始产流时间明显缩短。坡 面初始产流时间可表示为前期土壤含水量的幂函数 $(R^2 = 0.92, p < 0.01)$ 。当前期土壤含水量较小时,坡 面产流所需时间较长;当前期含水量逐渐增大,达田 间持水量甚至接近饱和含水量时,初始产流时间显 著缩短并渐趋于 0。除前期含水量为 15.3%和 20.4%、 25.1%和29.3%的处理间无显著差异外,初始产流时间 在其他各含水量处理间均存在显著差异。

2.1.2 产流过程 前期土壤含水量对坡地降雨一人 渗一产流过程有着重要的影响,不同前期土壤含水量使 坡面入渗特性产生差异,从而影响坡面产流过程^[19]。前 期土壤含水量显著影响坡面产流过程(图 2)。根据

产流特征可将前期土壤含水量分成3组:低含水量组 (5.8%和10.6%)、中含水量组(15.3%,20.4%,25.1%)和 高含水量组(29.3%)。其中,低含水量组和中含水量 组产流速率随降雨历时变化曲线呈对数趋势,产流速 率在初期快速增大,后渐趋稳定,但中含水量组产流 速率明显高于低含水量组;高含水量组产流速率随 降雨历时变化曲线呈幂函数趋势,产流速率在产流瞬 间最高,后减小并很快稳定。坡面产流后,各含水量 组坡面径流稳定所需时间长短依次为低含水量组> 中含水量组>高含水量组。因此,前期土壤含水量越 大,径流稳定时间也越早。坡面产流总量与前期土壤 含水量呈极显著线性正相关关系($R^2 = 0.93, p <$ 0.01)。当含水量为29.3%时,坡面产流总量最大,较 其他含水量坡面增加 8.0%~116.7%。值得注意的 是,15.3%含水量坡面的产流总量虽略大于20.4%含 水量坡面,但总体而言,坡面产流总量仍随前期土壤 含水量的提高而显著增加。



注:图中不同小写字母表示不同处理间差异显著(p<0.05)。下同。

图 1 不同前期土壤含水量条件下的坡面初始产流时间

2.2 前期土壤含水量对坡面产沙过程的影响

前期土壤含水量可显著影响坡面产沙过程(图 3)。整个降雨过程中,高含水量组(29.3%)坡面土壤 流失量远大于其他含水量组,其随降雨历时呈陡降、 短暂缓升、后渐小并趋于稳定;低含水量组(5.8%和 10.6%)土壤流失量始终最低,在前 6 min 迅速增大, 后逐渐减小并趋于稳定;中含水量组(15.3%,20.4%, 25.1%)土壤流失量过程变化则由于含水量范围较大表 现复杂:15.3%含水量坡面土壤流失量初期快速减 小,中后期出现2个明显的泥沙上升期;20.4%坡面 在快速减小后进入基本稳定状态;25.1%坡面则在初 期减小后很快开始持续上升。虽15.3%含水量坡面 的土壤流失量明显高于20.4%坡面,但坡面土壤流失总 量整体上仍可用前期土壤含水量的幂函数表示(R2= 0.76,p<0.05)。坡面土壤流失量随着前期土壤含水量 的增大而增大,尤其是前期含水量接近饱和时,土壤流 失量的增大趋势更为明显。高含水量组坡面土壤流失 总量为 16.82 kg/m²,分别是低含水量组和中含水量 组平均土壤流失总量的86.1,8.9倍。

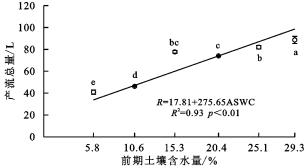
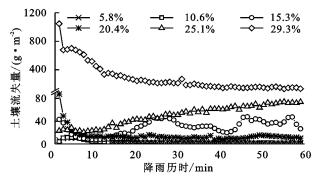



图 2 不同前期土壤含水量条件下的产流过程及产流总量

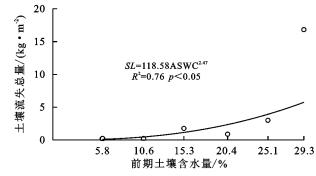
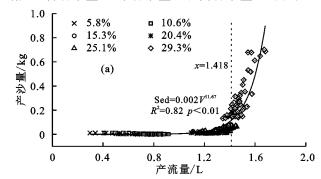



图 3 不同前期土壤含水量条件下土壤流失量过程及土壤流失总量

2.3 不同前期土壤含水量条件下坡面产流产沙关系

坡面产流产沙过程密不可分,基于此,进一步分析不同前期土壤含水量下的坡面产流产沙关系。通过对降雨过程中的产流量和产沙量拟合分析(图 4a)得出,不同前期土壤含水量条件下产沙量随着产流量的增大而增大,两者之间存在极显著的幂函数关系($R^2 = 0.82, p < 0.01$)。随着产流量增大,产沙量增幅也逐渐增大,特别是产流速率超过 1.418 L/min 后,产沙量急剧增加。低含水量组、中含水量组和高含水量组的径流泥

注:图 4(b)中 29.3%含水量处理累积产沙量对应右轴。

沙特性分别表现为:水小沙少、水大沙少和水大沙多。不同前期土壤含水量条件下,累积产沙量均随累积产流量的增大而增大,但增长速率和幅度存在差异(图 4b)。随着累积产流量的增加,各含水量处理的累积产沙量增幅依次为 29.3% > 25.1% > 15.3% > 20.4% > 10.6% > 5.8%。其中,29.3%含水量坡面的增幅最大,5.8%坡面最小。对 15.3%含水量坡面而言,其累积产沙量在产流 24 min 后高于 20.4%坡面,其累积产沙量的增幅最终也远大于 20.4%坡面。

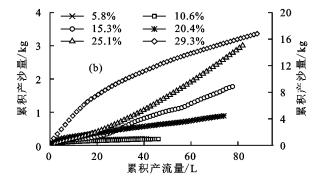


图 4 不同前期土壤含水量条件下的产流产沙关系

为进一步描述不同前期土壤含水量条件下的产流产沙关系,通过回归分析发现泥沙量可表示为:

Sed=
$$10^{0.104} \times \text{ASWC}^{9.348} \times V^{4.678}$$
 $R^2 = 0.968$ (1)
Sed= $10^{-4.790} \times T^{-2.503} \times V^{3.879}$ $R^2 = 0.976$ (2)
式中:Sed 为泥沙量(g);ASWC 为前期土壤含水量(%);
 V 为径流量(L); T 为坡面初始产流时间(min)。

可见,泥沙量可表示为前期土壤含水量和径流量的幂函数,随着前期含水量和径流量的增加而增加; 也可表示为坡面初始产流时间和径流量的幂函数,随 初始产流时间的减小和径流量的增加而增加。2 个表达式的决定系数(R²)均在 0.96 以上,且几乎无差别,说明以前期土壤含水量和径流量、初始产流时间和径流量描述坡面产沙的效果基本相同。

而对野外试验而言,受试验条件所限,初始产流时间和前期土壤含水量往往不能同时测定出来。因此,在已获取其他指标的情况下,可联合使用2个方程来计算难以监测的指标,从而更好地描述土壤侵蚀过程。

3 讨论

前期土壤含水量是影响坡地降雨入渗、产流和产 沙过程的重要因素。本研究表明,随着前期土壤含水 量的提高,坡面初始产流时间缩短,产流量和产沙量 总体增加,这与国内的已有研究[12-13]结果一致。降雨 开始后,降雨雨滴润湿地表后水分开始入渗,当土壤 入渗能力及土表持水能力小于降雨强度时,坡面开始 产流。随着前期含水量升高,入渗水的库容和入渗率 均减小,必然导致产流时间提前和产流量增加[20]。 坡面径流又是产沙最直接的动力因素,故产沙量也随 之增大。本研究中,除高含水量组外,其他2个含水 量组产流速率随降雨历时均先增大后渐趋稳定,且在 径流非稳定阶段产流速率的增幅随着前期含水量的 增大而减小,达到径流稳定所需时间也明显缩短。当 前期含水量较低时,雨滴击溅易使土壤团聚体崩裂, 分散的细颗粒随水流堵塞土壤孔隙,加上降雨打击和 夯实作用,易形成物理结皮,其致密表层结构显著降 低土壤入渗速率,使产流速率迅速增大[21]。已有研 究[22] 表明,团聚体分散和结皮形成程度在前期含水 量较低时大大提高,而且结皮强度与前期含水量呈负 相关。另外,物理结皮的存在一定程度上增强土壤切 变强度,提高土壤抗蚀力[23],这也是低含水量组产流 后其土壤流失总量仍为最低的原因之一。

前期土壤含水量的差异促使坡面产沙过程也有 所不同。低含水量组坡面土壤流失量始终最低,在初 期增大后便逐渐减小并趋于稳定。中含水量组坡面 土壤流失量则表现各异:15.3%含水量坡面土壤流失 量初期快速减小,中后期因侵蚀细沟发育良好而出现 2个明显的泥沙上升期;20.4%坡面在初期减小后便 很快稳定,25.1%坡面则在快速减小后很快持续上 升。降雨初期坡面表层大量松散土壤易被径流搬运, 松散颗粒迅速减少,坡面土壤流失量随之快速减小。 对 20.4%含水量处理而言,坡面细沟发育则明显较 差,这可能与黏结力有关。根据前人[4,24]得到的结 论,神木砂黄土和西安郊区黄土的黏结力均随含水量 增大呈抛物线状,分别在 10%~20%和 15%~25% 含水量间存在峰值。相似地,安塞黄绵土的黏结力也 可能在 15.3%~25.1%含水量间达最大值,使土壤抗 蚀性能大大增强。因此,20.4%坡面土壤流失量在初 期减小后很快进入基本稳定状态。尽管 25.1% 坡面 未发生细沟侵蚀,但土壤流失量却在快速减小后很快 持续上升。因 15.3%含水量坡面细沟侵蚀的发育程 度明显优于20.4%坡面,而细沟侵蚀的发生又使侵蚀 进一步加剧,故20.4%坡面产流总量和土壤流失总量 均低于15.3%处理。高含水量组坡面土壤流失量在 整个降雨过程中均远高于其他含水量处理,进而使 29.3%处理的土壤流失总量与其他处理存在明显差

异,分别是低含水量组和中含水量组的 86.1,8.9 倍。这是由于此时前期含水量很高,已接近饱和,而近饱和状态下的黄土相对松散,坡面土体结构性差、稳定性低,土壤可蚀性大,极易在坡面发育大量细沟,加上黄土的湿陷性,很容易发生垮塌,使土壤流失量迅速增加,远高于其他含水量处理。因此可采取耕作、植被覆盖等措施维持适当土壤含水量使土层不饱和来减少土壤流失。另外,人工模拟降雨是开展土壤侵蚀与水土保持研究的重要途径,许多研究为减小下垫面变异性、降低前期含水量对试验的影响,往往对坡面预处理至饱和后才正式降雨,而黄土高原土壤常年处于非饱和状态,这也使得模拟降雨产生的土壤侵蚀量与野外相似条件下的侵蚀量存在较大差异[25]。

地表径流是土壤侵蚀最主要的源动力之一,因此 侵蚀的发生与径流密切相关。通常认为产流产沙关 系在净分离条件下是线性的,而沉积条件下则为二次 回归式[26]。本研究表明,不同前期土壤含水量条件 下产沙量与产流量之间存在幂函数关系 $(R^2=0.82)$, 前人[27-28]研究中也常用幂函数来描述产流和产沙的 关系。坡面侵蚀产沙过程中,径流是泥沙颗粒运动的 载体和驱动力,径流量增加使水流流速增大、水流搬 运能力增强,继而泥沙更易被剥蚀搬运,最终导致泥 沙量增大。随着产流量增大,产沙量的增幅也逐渐增 大,尤其是当产流速率超过 1.418 L/min 时,坡面产 沙量迅速增加,呈现"水大沙多"的特性。因此可将1. 418 L/min 看作产流速率的临界值,一旦超过此临界 值,坡面侵蚀加剧,产沙量迅速增加甚至翻倍。该临 界值对应的含水量正处于 25.1%~29.3%范围内,说 明随着前期含水量的升高,可能确实存在1个拐点, 使产沙量剧增。不同前期土壤含水量组间径流泥沙 特性表现各异,说明前期含水量对径流泥沙关系有着 重要影响,这与 Ma 等^[28]的研究结果一致。另外,不 同前期含水量条件下累积产沙量随累积产流量增大 而增大,且增幅大小与前期含水量基本一致。15.3% 含水量坡面的累积产沙量在产流 24 min 后超过 20.4% 坡面,这也说明相较于黏结力,细沟的发生才是15.3%坡 面土壤流失量高于20.4%坡面的主导原因。不同前期 土壤含水量条件下坡面可蚀性不尽相同[24],影响细沟的 发育程度,从而致使各含水量处理的侵蚀产沙量也存在 差异。坡面产沙量的大小与前期含水量和径流量呈正 相关关系,与初始产流时间呈负相关。前期土壤含水量 影响坡面入渗和产流特性,并进一步改变径流泥沙关 系,继而影响坡面产沙进程。

4 结论

- (1)随着前期土壤含水量升高,坡面初始产流时间提前,径流稳定时间缩短,产流总量增加。
 - (2)坡面土壤流失量随前期土壤含水量的增大呈

幂函数增加趋势,高含水量组(29.3%)的土壤流失总量分别是低含水量组(5.8%和10.6%)和中含水量组(15.3%,20.4%,25.1%)的86.1,8.9倍。当前期含水量接近饱和时,坡面侵蚀加剧,土壤流失量迅速增加。

(3)不同前期土壤含水量条件下坡面产流量与产沙量呈幂函数关系,当产流速率超过临界值 1.418 L/min时,产沙量迅速增加甚至翻倍,表现出水大沙多的特征。不同前期土壤含水量条件下累积产沙量均随累积产流量的增加而增加。前期土壤含水量通过影响入渗产流和改变径流泥沙关系双重作用来影响坡面产沙。

因此,对黄绵土坡面而言,应注意防范连绵持久 降雨后暴雨或特大暴雨所造成的水土流失问题,可采取耕作、植被覆盖等措施维持适当土壤含水量使土层 不饱和来减少水土流失。

参考文献:

- [1] 张向炎,史学正,于东升,等.前期土壤含水量对红壤坡面产流产沙特性的影响[J].水科学进展,2010,21(1):23-29.
- [2] Han E J, Merwade V, Heathman G C. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model [J]. Journal of Hydrology, 2012, 416/417:98-117.
- [3] Wang Y F, You W, Wang Q J. Effects of subsequent rainfall events with different intensities on runoff and erosion in a coarse soil[J].Catena,2018,170:100-107.
- [4] 王辉,王全九,邵明安.前期土壤含水量对坡面产流产沙特性影响的模拟试验[J].农业工程学报,2008,24(5):
- [5] Li J Y, Zhang F B, Wang S W, et al. Combined influences of wheat-seeding cover and antecedent soil moisture on sheet erosion in small-flumes[J]. Soil and Tillage Research, 2015, 151:1-8.
- [6] Le Bissonnais Y, Singer M J. Crusting, runoff, and erosion response to soil water content and successive rainfalls[J]. Soil Science Society of America Journal, 1992, 56(6):1898-1903.
- [7] Luk S H, Hamilton H. Experimental effects of antecedent moisture and soil strength on rainwash erosion of two luvisols, Ontario[J].Geoderma,1986,37(1):29-43.
- [8] 王礼先.水土保持学[M].北京:中国林业出版社,2001: 137-138.
- [9] Philip J R. The theory of infiltration: 5. The influence of the initial moisture content[J]. Soil Science, 1957, 84 (4):329-339.
- [10] 刘振波,史学正,于东升,等.模拟降雨下土壤前期含水量对土壤可蚀性的影响[J].生态环境,2008,17(1):397-402.
- [11] Luk S H. Effect of antecedent soil moisture content on rainwash erosion[J].Catena,1985,12(2/3):129-139.
- [12] 张玉斌,郑粉莉.近地表土壤水分条件对坡面土壤侵蚀过程的影响[J].中国水土保持科学,2007,5(2):5-10.

- [13] 陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨 人渗及土壤水分再分布的影响[J].农业工程学报, 2006,22(1):44-47.
- [14] Defersha M B, Melesse A M. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio[J]. Catena, 2012, 90:47-52.
- [15] Bochet E, Poesen J, Rubio J L. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland: Influence of plant morphology and rainfall intensity[J]. Earth Surface Processes and Landforms, 2006,31(5):536-549.
- [16] Vermang J, Demeyer V, Cornelis W M, et al. Aggregate stability and erosion response to antecedent water content of a loess soil[J].Soil Science Society of America Journal, 2009, 73(3):718-726.
- [17] Wischmeier W H, Smith D D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains: Guide for selection of Practices for soil and water conservation[M]. Washington D C: US Government Printing Office, 1965: 10-36.
- [18] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. Washington D C: US Government Printing Office, 1997:143-182.
- [19] 蔡雄飞,雷丽,王济,等.前期含水量对喀斯特山地石灰 土坡面产流产沙的影响[J].水土保持研究,2019,26 (1):29-33.
- [20] 游微,樊军,魏修彬,等.粗质地土壤坡度和前期含水量对土壤侵蚀的影响[J].水土保持学报,2017,31(4):18-24.
- [21] 吴秋菊,吴佳,王林华,等.黄土区坡耕地土壤结皮对人 渗的影响[J].土壤学报,2015,52(2):303-311.
- [22] 路培,王林华,吴发启.不同降雨强度下土壤结皮强度对侵蚀的影响[J].农业工程学报,2017,33(8):141-146.
- [23] 卜崇峰,蔡强国,张兴昌,等.土壤结皮的发育特征及其生态功能研究述评[J].地理科学进展,2008,27(2):26-31.
- [24] 段金晓,李鹏,李占斌,等.模拟降雨下前期含水量对冻融坡面产流产沙过程的影响[J].水土保持学报,2017,31(6):73-78,175.
- [25] 柯奇画,张科利.人工降雨模拟试验的相似性和应用性 探究[J].水土保持学报,2018,32(3):16-20.
- [26] Huang C H, Bradford J M. Analyses of slope and runoff factors based on the WEPP erosion model[J]. Soil Science Society of America Journal, 1993, 57(5):1176-1183.
- [27] 徐露,张丹,向宇国,等.不同耕作措施下金沙江下游紫色土区坡耕地产流产沙特征[J].山地学报,2020,38 (6):851-860.
- [28] Ma L, Li J Y, Liu J J. Effects of antecedent soil water content on infiltration and erosion processes on loessial slopes under simulated rainfall [J]. Hydrology Research, 2020, 51(5):882-893.