黑土坡面垄侧少耕措施的土壤侵蚀特征分析

刘殿民1,沈海鸥1,4,武佳龙1,栾凤娇2,牟廷森1,王岩生3

(1. 吉林农业大学资源与环境学院,长春 130118; 2. 吉林省正源环保科技有限公司,长春 130000;

3.公主岭市勾家店水库灌区管理所,吉林 公主岭 136121;4.吉林省商品粮基地土壤资源可持续利用重点实验室,长春 130118)

摘要:为探究黑土区坡耕地垄侧少耕措施对土壤侵蚀特征的影响,在5°和7°坡面开展人工模拟降雨试验,降雨强度为75,100 mm/h,横垄处理方式包括全松(土壤容重均为1.00 g/cm³)、上松下实(土壤容重分别为1.00 g/cm³)、上松下实(土壤容重分别为1.00 g/cm³)及全实(土壤容重均为1.20 g/cm³)4种。结果表明:垄侧少耕措施有助于延缓横垄溢流时间,具有明显的调控土壤侵蚀作用。土壤侵蚀量大小总体表现为全松〉上松下实〉全实〉上实下松。除75 mm/h降雨强度下的5°坡面外,与全松处理相比,上实下松和全实处理的径流量分别减少16.1%~19.4%和6.6%~11.4%,土壤侵蚀量分别减少25.0%~52.5%和17.9%~31.6%,且上实下松和全实处理的径流率和土壤侵蚀量。可见,垄侧少耕措施在调控总径流量和土壤侵蚀量的同时,也具有较好地调控径流侵蚀过程的作用。因此,建议根据黑土区坡耕地具体降雨特征和地形坡度等因素科学选用垄侧少耕措施。

关键词:黑土区;坡耕地;土壤侵蚀;垄侧少耕措施

中图分类号:S157.1 文献标识码:A 文章编号:1009-2242(2022)04-0001-06

DOI:10.13870/j.cnki.stbcxb.2022.04.001

Analysis of Soil Erosion Characteristics of Half-ridge Less Tillage Measure on the Black Soil Hillslope

LIU Dianmin¹, SHEN Haiou^{1,4}, WU Jialong¹, LUAN Fengjiao², MOU Tingsen¹, WANG Yansheng³

(1. College of Resources and Environment, Jilin Agricultural University, Changchun 130118;

2. Jilin Zhengyuan Environmental Protection Technology Limited Company, Changchun 130000;

3. Goujiadian Reservoir Irrigation District Administration of Gongzhuling City, Gongzhuling, Jilin 136121;

4. Jilin Key Laboratory of Soil Resource Sustainable Utilization for Commodity Grain Bases, Changchun 130118)

Abstract: To reveal effects of the half-ridge less tillage measure on soil erosion characteristics at sloping farmlands of the Chinese black soil region, the artificial simulated rainfall experiments were carried out on 5° and 7° slopes with 75 mm/h and 100 mm/h rainfall intensities. The cross ridge treatments included all looseness (the soil bulk density was 1.00 g/cm³), upper looseness+lower compaction (the soil bulk densities was 1.00 and 1.20 g/cm³, respectively), upper compaction+ lower looseness (the soil bulk densities was 1.20 and 1.00 g/cm³, respectively) and all compaction (the soil bulk density was 1.20 g/cm³). The results showed that the half-ridge less tillage measure delayed the overflow time of crossridge, and obviously regulated soil erosion. The soil erosion amounts decreased in the order of all looseness > upper looseness + lower compaction>all compaction>upper compaction+lower looseness. Except for the 5° slope with 75 mm/h rainfall intensity, compared with the all looseness treatment, the total runoff amounts of the upper compaction+lower looseness and all compaction treatments decreased by 16.1% to 19.4% and 6.6% to 11.4%, respectively, the soil erosion amounts decreased by 25.0% to 52.5% and 17.9% to 31.6%, respectively. Furthermore, the changes of both runoff rate and soil erosion rate of the upper compaction+lower looseness and all compaction treatments with rainfall duration were relatively stable. Therefore, the half-ridge less tillage measure not only controlled the total runoff and soil erosion amounts but also regulated

收稿日期:2022-01-01

资助项目:国家重点研发计划项目(2016YFE0202900);国家自然科学基金项目(41601281)

第一作者:刘殿民(1998—),男,硕士研究生,辽宁营口人,主要从事土壤侵蚀机理研究。E-mail:liudianmin0526@163.com

通信作者:沈海鸥(1986—),女,博士,吉林大安人,副教授,主要从事土壤侵蚀机理研究。E-mail;shensusan@163.com

the runoff and soil erosion processes. In conclusion, the half-ridge less tillage measure should be selected scientifically according to the specific rainfall characteristics and topographic slope gradients of farmlands in the black soil region.

Keywords: black soil region; sloping farmland; soil erosion; half-ridge less tillage measure

黑土地粮食产量对吉林省贡献率超过80%,为 我国粮食安全和可持续发展做出重要贡献[1-2]。东北 黑土区坡耕地约占黑土区总面积 1/2 以上,但由于东 北地区雨季和旱季之间转换等自然原因[3],以及人类 生产活动等人为原因,导致黑土区坡耕地在水力、风 力等外营力作用下的土壤侵蚀问题严峻[4]。东北黑 土区坡耕地耕作措施主要包括横坡垄作、垄向区田、 竹节垄等,能够明显增强坡耕地水土保持能力[5-6]。 免耕、少耕保护性耕作能够增加土壤中全氮、有机质 和速效钾含量,显著提高土壤脲酶、蔗糖酶等活性[7], 同时能够增加土壤容重,改善土壤理化性质[8],增加 土壤蓄水保水能力等[9-10]。近年来,吉林省部分地区 根据当地气候及地形特征推广了一种玉米垄侧减免 耕保墒栽培技术,简称为垄侧少耕措施,该保护性耕 作方式在种植时只利用垄的一侧耕作,垄的另一侧在 耕种年处于闲置状态,以提高耕地质量,实行隔年轮 换种植、倒茬休耕,实现休地与养地同时进行,最大限 度保护当地土壤状况。然而,目前黑土区坡耕地土壤 侵蚀特征对该技术的响应尚不明确。因此,为探究新 型垄侧少耕措施的水土保持效果,本研究采用人工模 拟降雨试验方法,通过控制横垄土壤容重的方式模拟 垄侧少耕措施对黑土坡面径流量、土壤侵蚀量、径流 率、土壤侵蚀速率等的影响,以期为东北黑土区坡耕 地土壤侵蚀防治提供科学依据。

1 材料与方法

1.1 试验装置与材料

试验于 2021 年 6—9 月在吉林农业大学水土保持科研基地(125°21′E,43°52′N)人工模拟降雨大厅内进行,研究区属于温带大陆性季风气候,降雨主要集中在 6—9 月,年平均降水量 617 mm,年平均气温 4.8 ℃ [11]。试验降雨设备为下喷式人工模拟降雨系统,降雨高度为 6 m,降雨均匀度>90%,降雨覆盖面积为 6 m×3 m,降雨强度主要通过调节压力阀和喷头孔径(5~12 mm)来控制,降雨强度可调节范围为 30~165 mm/h,试验土槽规格为长 2 m、宽 0.5 m、深 0.5 m,其可调节坡度为 0~30°。试验土槽底部有 9排 3 列均匀的排水孔,共 27 个,其孔径为 2 cm,用于保证试验过程中下渗水分顺利排出 [12]。试验土样为典型黑土耕地土壤样品,采自吉林省榆树市,耕地主要经济作物为玉米,采样后测得耕层土壤容重平均为 1.20 g/cm³,其中黏粒、粉粒、砂粒分别占土壤总体机

械组成的 21.2%,47.9%和 30.9%,采样后为尽量保持土壤本身的理化性质,不过筛,仅去除植物根系及砾石等杂质即装填土槽。

1.2 试验设计

东北黑土区坡耕地多为长缓坡,其中 60%坡耕地坡度为 3°~8°[13-15],据此将试验土槽坡度分别设计为 5°和 7°。根据野外测量获得的数据和查阅相关的资料[16],模拟黑土区耕地特征装填试验土槽:(1)透水层(深度 5 cm),将土槽底部用纱布覆盖以防止细沙下漏,在纱布上方均匀装填天然细沙,以保证土槽排水良好;(2)犁底层(深度 20 cm),在细沙之上均匀装填 4 层土壤样品,每层深度为 5 cm,土壤容重为1.35 g/cm³;(3)耕作层(深度 15 cm),在犁底层之上装填 3 层土壤样品,每层深度为 5 cm,土壤容重为 1.20 g/cm³。

土槽装填完成后,在耕作层表面从距土槽集流口 50 cm 处开始起垄。垄作方式为横坡垄作,按照野外 实测东北黑土区横垄规格及相关研究结果[17],结合 试验土槽深度情况进行修垄,垄间距为 65 cm,垄丘 顶宽为 20 cm, 垄高为 10 cm。课题组野外测定黑土 区坡耕地翻耕后土壤容重平均为 1.00 g/cm³,作物生 长后期土壤容重平均约为 1.20 g/cm3。据此,通过控 制土壤容重模拟野外垄侧少耕措施,试验处理包括横 垄全松、上实下松、上松下实及全实4种方式(表1)。 (1)全松(土壤容重均为 1.00 g/cm³):模拟黑土区耕地土 地翻耕起垄后,横垄为全松状态;(2)上松下实(土壤容重 分别为 1.00,1.20 g/cm³):模拟黑土区耕地第 1 年在横 垄下方一侧进行压实耕种,上方一侧不进行种植的横垄 状态;(3)上实下松(土壤容重分别为 1.20,1.00 g/cm³); 模拟黑土区耕地第1年在横垄上方一侧进行压实耕种, 下方一侧不进行种植的横垄状态;(4)全实(土壤容重均 为 1.20 g/cm³):模拟黑土区耕地第 2 年在横垄另一侧 进行种植的横垄状态。根据东北黑土区夏季强降雨 变化特征[18],将降雨强设计为75,100 mm/h,降雨历 时为 60 min。每个试验处理重复 3 次。

表 1 不同处理方式横垄土壤容重

单位:g/cm3

处理方式	横垄上半部分	横垄下半部分
全松	1.00	1.00
上松下实	1.00	1.20
上实下松	1.20	1.00
全实	1.20	1.20

1.3 试验方法

土槽装填完成后,自沉降 24 h,待自然沉降之后,采用 30 mm/h 的降雨强度对土槽进行预降雨,至垄沟间刚刚产生积水为止,目的是保证正式试验前,不同试验处理土壤物理性状一致,减少试验误差。预降雨结束后,用塑料布将试验土槽表面覆盖,静置 24 h,使土壤水分充分下渗,测得下渗后试验土样垄顶土壤质量含水量为(33.6±4.7)%,垄沟土壤质量含水量为(32.9±5.5)%。

在正式试验前进行降雨强度率定,为保证降雨试验的准确性和均匀性,当降雨强度差值<5%、降雨均匀度>90%时揭开土槽上方塑料布进行正式降雨试验。坡面开始产流后,记录产流时间,同时在集流口处接取径流泥沙样品,每次取样时间间隔 1~4 min,取样时间视径流泥沙样品量灵活掌握。

模拟降雨试验结束后,称取径流泥沙样品质量,将 其放置于取样桶内静置 6~8 h后,倒掉上层清液后转移 至已知质量的铝盒内,并将其放置到已设置好的恒温为 105 ℃的烘箱中烘干,称取泥沙质量,用来计算径流量、 土壤侵蚀量、径流率和土壤侵蚀速率[19]。

1.4 数据处理

采用 SPSS 19.1 和 Excel 2010 进行数据处理与分析。使用 Excel 2010 统计数据信息,计算径流量和土壤侵蚀量,分别绘制径流率和土壤侵蚀速率随降雨历时的变化过程图,通过 SPSS 19.1 软件中方差分析、多重比较(LSD)和独立样本 t 检验,分析径流量、土壤侵蚀量和横垄溢流时间的显著性差异(p<0.05)。

2 结果与分析

2.1 不同容重横垄坡面径流量和土壤侵蚀量对比

试验条件下,不同横垄处理的径流量和土壤侵蚀量具有一定差异(表 2)。以全松处理为对照,除 75 mm/h 降雨强度下的 5°坡面外,其他降雨强度和坡度条件下,上松下实、上实下松和全实处理的径流量均减小,特别是上实下松和全实处理,其径流量减少比例分别为 16.1%~19.4%和 6.6%~11.4%。对于 75 mm/h 降雨强度下的 5°坡面,上实下松和全实处理的径流量与全松处理相比分别增加 16.7%和 27.6%。

坡度/(°)	处理方式	降雨强度 75 mm/h			降雨强度 100 mm/h				
			减少	土壤	减少	径流量/	减少	土壤	减少
		L	比例/%	侵蚀量/g	比例/%	L	比例/%	侵蚀量/g	比例/%
5	全松	36.6Bb	0	83.1Bb	0	76.4Aa	0	462.6Aa	0
	上松下实	35.1Bb	4.1	37.6Bc	54.8	74.6Aa	2.4	426.5Aa	7.8
	上实下松	42.7Ba	-16.7	84.9Bb	-2.2	62.7Ab	17.9	346.9Ab	25.0
	全实	46.7Ba	-27.6	120.8Ba	-45.4	67.7Ab	11.4	379.8Ab	17.9
7	全松	53.2Ba	0	403.3Ba	0	83.3Aa	0	788.7Aa	0
	上松下实	53 . 0Ba	0.4	389.1Ba	3.5	82.4Aa	1.1	654.0Ab	17.1
	上实下松	42.9Bb	19.4	191.7Bc	52.5	69.9Ab	16.1	505.7Ad	35.9
	全实	49.7Ba	6.6	275.9Bb	31.6	75.3Aab	9.6	604.8Ac	23.3

表 2 不同横垄处理方式下径流量、土壤侵蚀量及其调控效果对比

注:同行不同大写字母表示相同坡度及横垄处理方式下不同降雨强度处理的径流量或土壤侵蚀量差异显著(p < 0.05);同列不同小写字母表示相同坡度及降雨强度下不同横垄处理方式的径流量或土壤侵蚀量差异显著(p < 0.05)。

与径流量相比,不同容重横垄处理的土壤侵蚀量差异更加显著(表 2),土壤侵蚀量大小总体表现为全松>上松下实>全实>上实下松。以全松处理为对照,除 75 mm/h 降雨强度下 5°坡面上实下松和全实处理外,其他降雨强度和坡度条件下,上松下实、上实下松和全实处理的土壤侵蚀量均减小,上松下实、上实下松和全实处理的土壤侵蚀量减少比例分别为3.5%~54.8%,25.0%~52.5%和17.9%~31.6%。

2.2 不同容重横垄坡面径流侵蚀过程分析

2.2.1 不同容重横垄坡面径流率随降雨历时的变化 不同容重横垄坡面径流率随降雨历时的变化总体 表现为先增加后趋于相对稳定(图 1)。但是,在不同 降雨强度和坡度条件下,其变化趋势略有差异。在 75 mm/h 降雨强度下,不同容重横垄坡面产流率随降雨历时均呈现先缓慢增加,再迅速增加,最后整体相对稳定的"一级台阶型"变化趋势;在100 mm/h 降雨强度下,不同容重横垄坡面产流率随降雨历时均呈现先增加后趋于相对稳定,再增加并趋于相对稳定的"二级台阶型"变化趋势,这是由于较大的降雨强度造成坡面上侧横垄出现溢流或断垄现象,导致径流率再次出现急剧增加的变化趋势。此外,对于不同容重横垄坡面,上实下松及全实处理的径流率随降雨历时的变化曲线相对比较平稳,未出现明显波动,75,100 mm/h 降雨强度下,上实下松处理的径流率分别稳定在0.8~0.9,1.4~1.5 L/(m²·min);全实处理的径流率分别稳定在0.9~1.0,1.5~1.6 L/(m²·min)。

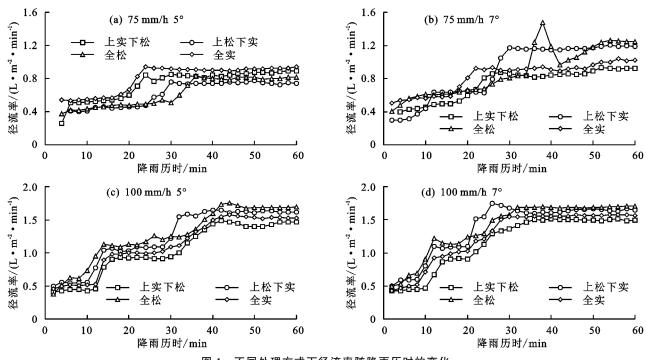
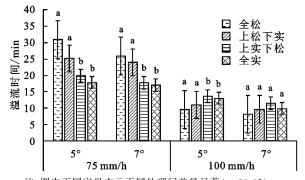



图 1 不同处理方式下径流率随降雨历时的变化

横垄溢流时间在揭示径流率随降雨历时的变化过程中具有一定的标记作用,不同容重横垄坡面的横垄溢流时间也存在差异(图 2)。在 75 mm/h 降雨强度下,全松和上松下实处理的溢流时间明显长于上实下松和全实处理;与全松处理相比,5°和 7°坡面上实下松处理的横垄溢流时间分别提前 11.2,8.2 min,全实处理的横垄溢流时间分别提前 13.1,9.0 min,上松下实处理的横垄溢流时间也分别提前 5.9,1.9 min。

注:图中不同字母表示不同处理间差异显著(p<0.05)。

图 2 不同处理方式下横垄溢流时间对比

2.2.2 不同容重横垄坡面土壤侵蚀速率随降雨历时的变化 不同容重横垄坡面的土壤侵蚀速率随降雨历时的变化在不同降雨强度和坡度条件下未呈现明显的规律性变化(图 3),但是多数处理呈现先增加后趋于相对稳定或减少的变化趋势。此外,土壤侵蚀速率随降雨历时的波动幅度明显高于径流率随降雨历时的波动幅度(图 1)。降雨前期,由于坡面表层为裸露处理,含有大量的松散碎屑物质,在坡面径流作用下优先搬运这些物质[20],造成土壤侵蚀速率在短时间内增加;随着降雨的持续进行,虽然坡面

可供搬运的碎屑物质逐渐减少[21-22],但随着横垄溢流或者断垄现象的发生,为坡面径流提供更多的泥沙补给。此外,由于横垄溢流或者断垄时间具有差异性,导致土壤侵蚀速率随着降雨历时呈现不同的变化趋势。对于减少土壤侵蚀量比较显著的上实下松和全实处理,在75 mm/h降雨强度下,其土壤侵蚀速率随降雨历时的变化幅度明显小于100 mm/h降雨强度;75,100 mm/h降雨强度下,上实下松处理的土壤侵蚀速率变化范围分别为0.6~4.2,2.2~10.5 g/(m²•min),全实处理的土壤侵蚀速率变化范围分别为1.4~6.5,2.6~13.4 g/(m²•min)。

3 讨论

在降雨强度较小且坡度比较平缓的坡面条件下,横垄具有较强的土壤水分入渗能力和蓄水保水能力,不容易发生横垄溢流现象,垄体稳定性较好^[23-24];对于平均土壤容重较小的全松、上松下实、上实下松处理,有助于增加土壤水分入渗^[9],进而减少地表径流^[25]。此外,上松下实和上实下松处理的土壤侵蚀量与全松处理相比减少或无明显变化,而对于全实处理,由于较大土壤容重下的坡面径流量增大,造成径流挟沙力增加^[26-27],土壤侵蚀量对应增加。

随着降雨强度或坡度的增加,横垄的蓄水保水能力和土壤水分入渗能力均降低^[23-24],因此,不同容重横垄处理对径流量、土壤侵蚀量的调控效果差异更加显著。这是由于该条件下全松横垄土壤抗剪切能力和垄体稳定性降低^[28],容易发生溢流或断垄现象,甚至发生细沟侵蚀,从而增加径流量和径流含沙量^[23],

进而增加土壤侵蚀量,而全实状态下横垄中的土壤抗 剪切能力和垄体稳定性明显增强^[28],其在土壤侵蚀 率变化中尤为明显,可显著降低地表径流对横垄的直 接冲刷,因此,上实下松处理在较大降雨强度和坡度

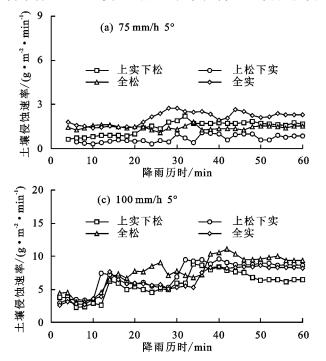
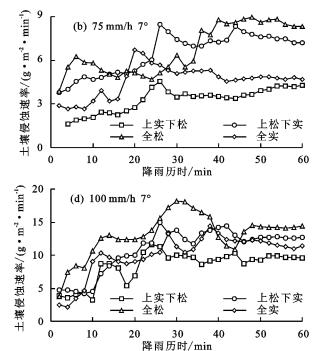


图 3 不同处理方式下土壤侵蚀速率随降雨历时的变化


值得注意的是,在降雨强度为 100 mm/h 时,由于降雨侵蚀力增加,导致不同容重横垄溢流时间发生变化,5°坡面全松和上松下实处理的溢流时间反而少于上实下松和全实处理;7°坡面不同容重横垄处理的溢流时间无显著差异,造成这种现象的原因除了与较大降雨侵蚀力有关外,主要是由于相对较大的地形坡度导致横垄蓄水保水能力降低,径流汇集较快,径流量迅速增加并发生溢流^[30],同时在重力等其他外界作用力下,打破横垄下半部分的受力平衡临界点,产生横垄局部损坏现象,进而导致短时间内径流率大幅度提高的情况,此时地形因素对径流的影响高于不同容重横垄处理的影响。

综上可知,在东北黑土区,如果降雨强度较大、经常发生极端降雨现象,或者坡耕地地形坡度较大,上实下松或全实的横垄能够在一定程度上减缓坡面径流、防治土壤侵蚀。因此,建议深入开展不同容重横垄处理的相关研究,从而提高垄侧少耕措施在东北黑土区坡耕地实施的科学性和适用性。

4 结论

(1)垄侧少耕措施具有一定的调控径流和土壤侵蚀的作用,特别是上实下松和全实处理,与全松处理相比,其径流量分别减少16.1%~19.4%和6.6%~11.4%,土壤侵蚀量分别减少25.0%~52.5%和17.9%~31.6%;土

下,其土壤侵蚀调控效果最好。同时,对于上松下实、 上实下松、全实处理,其适度少耕或免耕,不仅具有调 节径流的作用,还能够保持垄体稳定性^[29],减少垄沟 内径流对横垄垄体的破坏,进而减少土壤侵蚀量。

壤侵蚀量大小总体表现为全松>上松下实>全实> 上实下松。垄侧少耕措施也具有较好地调控径流侵 蚀过程的作用,其坡面径流率和土壤侵蚀速率随降雨 历时的变化相对比较平稳。

(2)在降雨强度较大、经常发生极端降雨现象或者地形坡度相对较大的坡耕地,上实下松或全实的横垄能够在一定程度上防治土壤侵蚀。因此,建议深入开展不同容重横垄处理的相关研究,从而提高垄侧少耕措施在东北黑土区坡耕地实施的科学性和适用性。

参考文献:

- [1] 窦森.吉林省黑土地保护与高值化利用工程[J].吉林农业大学学报,2020,42(5):473-476.
- [2] 牟廷森,沈海鸥,李洪丽,等.不同坡度下掺沙对黑土坡面径流侵蚀特征的影响[J].水土保持学报,2020,34(4):43-47,55.
- [3] 杨献坤,许文旭.东北黑土区裸露坡地土壤侵蚀特征研究[J].吉林农业大学报,2021,10(1):47-57.
- [4] 何煦,桑琦明,郑粉莉,等.东北不同黑土厚度区多营力作用的坡面土壤侵蚀试验研究[J].水土保持学报,2021,35(1):103-109,115.
- [5] 牛晓乐,秦富仓,杨振奇,等,黑土区坡耕地几种耕作措施水土保持效益研究[J].灌溉排水学报,2019,38(5):67-72.
- [6] 耿煜函,肖洋,张美芝,等.东北黑土区坡耕地侵蚀沟研

- 究现状及进展[J].中国农学通报,2021,37(21):80-85.
- [7] 闫雷,纪晓楠,孟庆峰,等.免耕措施下黑土区坡耕地土壤肥力质量评价[J].东北农业大学学报,2019,50(5):43-54.
- [8] Hernanz J L, López R, Navarret L, et al. Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain[J]. Soil and Tillage Research, 2002, 66(2): 129-141.
- [9] 陈强, Yuriy S K, 陈渊, 等. 少免耕土壤结构与导水能力的季节变化及其水保效果[J]. 土壤学报, 2014, 51(1): 11-21.
- [10] 贺云锋,沈海鸥,张月,等.黑土区坡耕地不同秸秆还田方式的水土保持效果分析[J].水土保持学报,2020,34 (6):89-94.
- [11] 朱姝,窦森,关松,等.秸秆深还对土壤团聚体中胡敏素 结构特征的影响[J].土壤学报,2016,53(1):127-136.
- [12] 郑粉莉,赵军.人工模拟降雨大厅及模拟降雨设备简介 [J].水土保持研究,2004,11(4):177-178.
- [13] He J, Li H, Kuhn N J. Effect of ridge tillage, no-tillage, and conventional tillage on soil temperature, water use, and crop performance in cold and semi-arid areas in Northeast China[J]. Australian Journal of Soil Research, 2010, 48(8): 737-744.
- [14] 姜义亮,郑粉莉,温磊磊,等.降雨和汇流对黑土区坡面 土壤侵蚀的影响试验研究[J].生态学报,2017,37(24): 8207-8215.
- [15] 魏永霞,王鹤,吴昱,等.生物炭对不同坡度坡耕地土壤水动力学参数的影响[J].农业机械学报,2019,50(3): 231-240.
- [16] 平翠枝,红梅,王文东,等.不同耕作方式对黑土区农田土壤物理特性的影响[J].中国农学通报,2020,36(7):83-89.
- [17] 边锋,郑粉莉,徐锡蒙,等.东北黑土区顺坡垄作和无垄 作坡面侵蚀过程对比[J].水土保持通报,2016,36(1):
- [18] 邹文秀,陆欣春,陈旭,等.东北黑土区农田土壤水分剖面分布与大气降水关系的研究[J].土壤通报,2019,50 (2):267-273.
- [19] 沈海鸥,郑粉莉,温磊磊,等.降雨强度和坡度对细沟形

态特征的综合影响[J].农业机械学报,2015,46(7): 162-170.

第 36 卷

- [20] 刘冉,余新晓,蔡强国,等.黄土丘陵沟壑区黄土坡面侵蚀过程及其影响因素[J].应用生态学报,2021,32(8): 2886-2894.
- [21] 韩巍,徐晓旭,李冬,等.耕作方式对辽西褐土区土壤穿透阻力的影响及机理[J].水土保持学报,2020,34(6): 143-149.
- [22] 苏鹏,贾燕锋,曹馨月,等.东北黑土区不同坡段等间距植物篱减流减沙特征[J].水土保持学报,2019,33(3): 22-26,35.
- [23] 王磊,何超,郑粉莉,等.黑土区坡耕地横坡垄作措施防治土壤侵蚀的土槽试验[J].农业工程学报,2018,34 (15):141-148.
- [24] Wolschick N H, Bertol I, Barbosa F T, et al. Remaining effect of long-term soil tillage on plant biomass yield and water erosion in a Cambisol after transitionto no-tillage[J]. Soil and Tillage Research, 2021, 213:105-149.
- [25] Ao C, Zeng W Z, Yang P L, et al. The effects of slope shape and polyacrylamide application on runoff, erosion and nutrient loss from hillslopes under simulated rainfall [J]. Hydrological Processes, 2021, 35 (4): e14130
- [26] 张兴义,乔宝玲,李健宇,等.降雨强度和坡度对东北黑土区顺坡垄体溅蚀特征的影响[J].农业工程学报,2020,36(16):110-117.
- [27] 覃自阳,何丙辉,甘凤玲.模拟降雨下重庆喀斯特槽谷 区径流氮磷元素流失特征[J].中国农业大学学报, 2021,26(5):129-140.
- [28] 宋鸽,史东梅,朱红业,等.不同耕作措施对红壤坡耕地 耕层质量的影响[J].土壤学报,2020,57(3):610-622.
- [29] Shen HO, He YF, HuW, et al. The temporal evolution of soil erosion for corn and fallow hillslopes in the typical Mollisol region of Northeast China[J]. Soil and Tillage Research, 2019, 186; 200-205.
- [30] Li H R, Liu G, Gu J, et al. Response of soil aggregate disintegration to the different content of organic carbon and its fractions during splash erosion[J]. Hydrological Processes, 2021, 35(2):e14060.