祁连山排露沟流域土壤有机碳空间变异性研究

芦倩1,李毅1,刘贤德1,2,赵维俊2

(1.甘肃农业大学林学院,兰州 730070;2.甘肃省祁连山水源涵养林研究院,甘肃 张掖 734000)

摘要:为研究小流域尺度下土壤有机碳的变异规律,运用地统计学方法对研究区 0—10,10—20,20—40 cm 土壤有机碳含量的空间变异性进行了研究。结果表明:流域内不同土层有机碳含量属于中等强度变异,具有强烈的空间自相关性;土壤有机碳含量在 0,135°方向上空间变异程度明显,空间分布的各向异性显著;克里格插值结果显示流域内阴坡土壤有机碳含量明显高于阳坡,高海拔区域土壤有机碳含量高于低海拔区域;不同土层间,土壤有机碳含量均表现为青海云杉>灌丛>草地,表明不同植被类型对土壤有机碳含量和分布有着重要影响。土壤有机碳含量的空间变异性特征,与土壤性质、地形因子等结构性因素有关,为研究祁连山小流域土壤信息差异性的测量和描述提供科学依据。

关键词:土壤有机碳;空间变异;祁连山;排露沟

中图分类号:S153.6 文献标识码:A 文章编号:1009-2242(2020)05-0238-06

DOI:10.13870/j.cnki.stbcxb.2020.05.033

Study on Spatial Variability of Soil Organic Carbon in Pailugou Catchment of Qilian Mountains

LU Qian¹, LI Yi¹, LIU Xiande^{1,2}, ZHAO Weijun²

(1. College of Forestry, Gansu Agricultural University, Lanzhou 730070;

2. Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye, Gansu 734000)

Abstract: In order to study the variation of soil organic carbon in small watershed scale, the spatial variability of soil organic carbon contents in 0-10, 10-20, 20-40 cm was studied by geostatistical method. The results showed that the organic carbon contents in different soil layers in the watershed had a moderate intensity variation with strong spatial autocorrelation. The spatial variation of soil organic carbon content was obvious in the directions of 0 and 135° , and the spatial distribution was anisotropic. The results of Kriging interpolation showed that the contents of soil organic carbon in the shady slope were significantly higher than those in the sunny slope, and the contents of soil organic carbon in the high altitude area were higher than those in the low altitude area. Among the different soil layers, the contents of soil organic carbon were represented by $Picea\ crassifolia > \text{shrub} > \text{grassland}$, indicating that the different vegetation types had an important influence on the content and distribution of soil organic carbon. The spatial variability of soil organic carbon content was related to structural factors such as soil properties and topography factors, which provided a scientific basis for the measurement and description of soil information differences in the small watershed of Qilian Mountain.

Keywords: soil organic carbon; spatial variability; Qilian Mountains; pailugou catchment

土壤碳库是陆地生态系统中最大的碳库,土壤碳库中约有 1 550 PgC 为土壤有机碳库,有机碳含量约占陆地生物圈碳库的 2/3^[1]。土壤有机碳不仅是衡量土壤质量的重要指标,同时也为植物的生长提供碳源,在全球碳循环过程中具有举足轻重的作用。

土壤是时空连续的变异体,成土过程中受到时间、气候、母质、地形、植被及人为因素等影响,不论尺度大小,均具有空间异质性[2-8]。近年来,众多学者[4-6]对不同尺度下土壤有机碳的研究做了大量工

作。有研究[7]发现,土壤有机碳的含量、空间分布等受到尺度大小的影响。大尺度上,自然因素,包括气候、地形等对土壤有机碳影响较大;小尺度下则受土壤质地、植被分布等影响较深。即使在土壤质地相同的区域内,土壤有机碳在不同空间位置上也存在明显差异,即存在明显的空间变异性。不同植被类型下对土壤有机碳的影响状况不同。Cerri等[8]在巴西亚马逊流域研究了植被类型由林地改为牧草地下土壤有机碳的变化发现,表层土壤(0—20 cm)有机碳含量

收稿日期:2020-03-04

资助项目:甘肃农业大学科技创新基金——盛彤笙创新基金项目(GSAU-STS-2018-35);甘肃省自然科学基金重大项目(18JR4RA002)

第一作者:芦倩(1986—),女,讲师,在读博士研究生,主要从事森林水文研究。E-mail:lq04500232@qq.com

通信作者:李毅(1962-),男,教授,博士生导师,主要从事水土保持与荒漠化防治研究。E-mail:liyi@gsau.edu.cn

逐渐上升,并超过了原来林地覆盖时的含量。孙文义等^[9]在黄土丘陵沟壑区燕沟流域对土壤表层有机碳空间分布进行研究发现,地形和植被类型对小流域表层土壤有机碳含量分布影响显著。Chen等^[10]通过对我国西北部高山生态系统下土壤有机碳的研究发现,土壤有机碳在不同海拔及不同坡向梯度的植被类型下表现出强异质性。闫丽娟等^[11]对黄土丘陵区4种典型植被(荒草地、文冠果林地、柠条灌丛、沙棘林地)研究发现,植被类型是影响黄土高原土壤酶活性和土壤有机碳变化的重要因素。

目前对土壤有机碳的研究多集中于大区域、不同土 地利用类型和土壤肥力管理措施等方面,对于小流域、 高海拔、植被类型多样区域的土壤有机碳空间异质性研 究并不多见。此外,大部分研究[12-14]主要致力于表层土 壤的有机碳空间变异,忽略了深层土壤有机碳含量同样 丰富,对土壤有机碳垂直分布特征的研究相对较少,而 土壤有机碳的垂直分布一方面是对研究区碳储量进 行评价的因素之一,同时也是植被健康生长所不可或 缺的。所以,本文以祁连山排露沟小流域作为研究对 象,经过实地调查采集土样、室内试验分析,结合地统 计学和 3S 技术,研究该流域内土壤有机碳的变异性 及空间分布特征,既保留了传统统计学定量调查土壤 性质的方法,又定性研究了土壤有机碳水平及垂直分 布空间变异特征,深入探讨不同土层在各方向上的变 异函数特点,以期揭示小流域尺度下土壤有机碳的变 异规律,为研究祁连山土壤信息差异性测量和描述及 为研究区土壤碳库的评价提供科学依据。

1 研究区概况

研究区位于祁连山中段甘肃省祁连山森林生态系统定位研究站西水试验区排露沟流域($100^{\circ}17'-100^{\circ}18'E,38^{\circ}32'-38^{\circ}33'N$),海拔在 2 $600\sim3$ 800 m,纵坡比降 1:4.2,流域面积 2.74 km²。该区属大陆性高寒山地森林草原气候。根据祁连山西水生态站多年统计资料显示,该流域年均气温 $-0.6\sim2.0$ °C;年均降水量291.3~453.8 mm,多集中在 5—9月;年均蒸发量 1 081.7 mm;年均日照时间 1 895 h;日辐射总量 110.28 kW/m²;年均相对湿度 $60\%^{[14-16]}$ 。流域内海拔不同,水热条件存在较大差异,土壤和植被类型随山地地形和气候差异形成了明显垂直分布带。

海拔从低到高,土壤类型依次为分布在海拔2700~2900 m 阳坡的山地栗钙土、海拔2700~3300 m阴坡的山地灰褐土以及海拔3300~3800 m 亚高山地带的灌丛草甸土。其中,研究区内建群种青海云杉呈斑块状或条状分布在海拔2700~3300 m 的阴坡和半阴坡地带,土壤类型主要是山地灰褐土。草地主要分布在阳坡、半阳坡,土壤类型是山地栗钙

土。灌木优势种有金露梅(Potentilla fruticusa)、箭叶锦鸡儿(Caragana jubata)、吉拉柳(Salix gilashanica)等。草本主要有珠芽蓼(Polygonum viviparum)、黑穗苔(Carex atrata)、针茅(Stipa sp.)和芨芨草(Achnatherum splendens)等[17-18]。

2 研究方法

2.1 土壤采样方法

野外采样于 2019 年 6-7 月在祁连山排露沟流 域完成。在流域内海拔 2 700~3 600 m,根据青海云 杉林、草地、灌从3种植被分布类型进行土壤采样。 因高海拔地区地形复杂,常用的规则网格采样法实施 起来难度较大,因此结合不同植被,采用非等间距不 规则网格布点法,在流域内进行土钻取样,力求采样 点分布均匀。共采集样点74个,其中,青海云杉采样 点 34 个,草地 20 个,灌丛 20 个,采样点的空间分布 见图 1。每个土壤样点分 3 层采样,分别为 0—10, 10-20,20-40 cm,同时利用手持 GPS 记录每个样 点的经纬度、海拔、优势种、盖度等信息,采样后将土 壤装入密封袋密封,用4℃冷藏箱保存带回实验室待 自然风干后分析处理。土壤有机碳用重铬酸钾容量 法一外加热法[18]。植被类型空间分布图(图 1)是通 过 2018 年 7 月 16 日分辨率为 5.8 m 的资源三号谣 感卫星影像经解译,再与研究区实际植被分布情况对 比验证后得到。

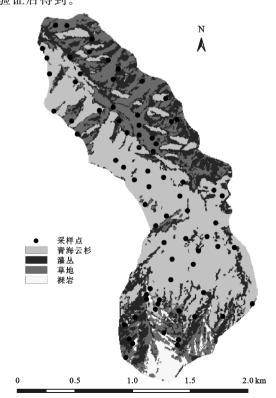


图 1 植被类型及采样点的空间分布

2.2 数据处理与方法

应用统计软件 SPSS 20.0 对土壤有机碳含量进行描

述性统计。在运用地统计学方法分析之前,先用非参数检验方法中的卡方检验(X²)分别对 0—10,10—20,20—40 cm 土层土壤有机碳样本数据进行分布类型检验,检验结果表明样本来源总体分布与正态分布无显著差异(P>0.05),说明不同土层土壤有机碳数据符合正态分布。然后对处理过的数据采用 GS+9.0 软件进行地统计学分析,结合分析后的半变异函数最优模型参数,选择 ArcGIS 10.2 地统计分析模块的克里格最优插值法,绘制出小流域土壤有机碳的空间分布。

3 结果与分析

3.1 不同土层土壤有机碳描述性统计特征

由表 1 可知,研究区 0-10, 10-20, 20-40 cm 土层土壤有机碳平均值分别为 65.69, 56.03, 46.38 g/kg。这表明研究区土壤有机碳含量总体水平较高,0-10 cm 土层有机碳含量最大,随着土层深度加深,土壤有机碳含量减少。从表 1 可以看出,不同土层的土壤变异系数分别为 0.51, 0.52, 0.53, 因此各土层土壤有机碳均为中等变异。

土层	样本数	平均值/	最大值/	最小值/	标准差/	变异	偏度	峰度	分布
深度/cm	件平奴	$(g \cdot kg^{-1})$	$(g \cdot kg^{-1})$	$(g \cdot kg^{-1})$	$(g \cdot kg^{-1})$	系数			类型
0—10	74	65.69	137.33	18.34	33.29	0.51	0.14	0.26	正态分布
10—20	74	56.03	122.62	13.07	29.40	0.52	0.06	-0.14	正态分布
20-40	74	46.38	98.67	10.46	24.56	0.53	-0.12	-0.18	正态分布

3.2 不同土层土壤有机碳的空间变异特征

地统计学把半方差函数作为空间变量特征分析的基本工具。土壤特性空间变异结构分析的关键是拟合出精度较高的半方差函数模型,一般要求拟合模型的决定系数(R^2)较大,残差(RSS)较小^[19]。本研究数据经检验符合正态分布,符合半方差函数分析要求。

3.2.1 不同土层土壤有机碳各向同性半方差函数分析 表 2 为不同土层土壤有机碳的半方差函数模型。其中, C_0 为块金值,块金值主要反映由随机性因素引起的空间变异; (C_0+C) 为基台值,表示系统内的总变异,是区域化变量的最大变异。块金值/基台值 $(C_0/(C_0+C))$ 为块金系数,用于判定区域化变量空间异质性的程

度^[20]。若比值<25%,说明变量具有强烈的空间相关性;比值在25%~75%,变量具有中等的空间相关性;入75%时,变量空间相关性很弱^[21]。从表2和图2可以看出,研究区不同土层的块金值/基台值均小于25%,表明研究区不同土层间土壤有机碳含量具有强烈的空间相关性,且土壤有机碳的空间变异主要由结构性因素引起,(如土壤类型、容重、孔隙度、地形因子与水文等因素)。0—10,10—20,20—40 cm 土层半方差函数模型的变程分别为1290,1474,1476 m,说明研究区不同土层土壤有机碳含量在这些范围内分别存在空间自相关性,反映了数据空间自相关的最大距离,超出此范围空间自相关性消失^[22]。

表 2 不同土层土壤有机碳各向同性半方差函数模型及其参数

土层	## ##	块金值	基台值	块金值/基台值(C ₀ /	变程/	决定	残差
深度/cm	模型	(C_0)	(C_0+C)	(C_0+C)	m	系数 R^2	RSS
0—10	球型 Spherical	0.0597	0.4299	0.1389	1290	0.8950	0.0212
10-20	球型 Spherical	0.0984	0.4898	0.2009	1474	0.8900	0.0258
20—40	球型 Spherical	0.1345	0.5660	0.2376	1476	0.8670	0.0377

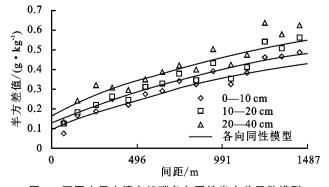


图 2 不同土层土壤有机碳各向同性半方差函数模型 3.2.2 不同土层土壤有机碳各向异性半方差函数分析 由上述分析得知,研究区不同土层间土壤有机碳的空间变异主要由结构性因素引起。为进一步探究

排露沟流域土壤有机碳含量的空间变异特征,对有机碳含量进行了各向异性分析。半方差函数在各个方向上的区域化变量差异性的不同称为各向异性。用GS+9.0 软件绘制 0(东一西),45°(东北一西南),90°(南一北),135°(西北一东南)4个方向上的半方差函数图,各向异性比为主轴变程与亚轴变程的比值,如果各向异性比等于或接近1,说明变量在各方向上变化是同性的,否则为各向异性。各向异性比越大,则区域化变量在该方向的变异越明显[23]。从表5流域不同土层各向异性半方差函数模型可以看出,在土层0—10,10—20,20—40 cm,土壤有机碳含量在45°和90°上各向异性比为1,均为各向同性,表明土壤有机碳在这2个方向上的变异不明显。根据图1中排露

沟流域不同植被生长分布情况可知,45°和90°这2个 方向上主要分布着同一种植被,所以同一土层下的土 壤有机碳变异不明显;在0和135°上为各向异性比 均大于1,土壤有机碳在0(东一西)方向空间变异最 明显,在135°(西北一东南)方向上土壤有机碳空间 变异程度较明显。根据图 1, 西部阴坡、半阴坡从海 拔 2 700~3 300 m 主要分布的植被是青海云杉林, 东部阳坡、半阳坡从海拔2700~2900m主要是草地 生长,说明植被类型、海拔和坡向的不同均影响着土 壤有机碳,这与土壤有机碳各向同性半方差分析结果 一致。表3是不同十层土壤有机碳各向异性半方差 函数模型。

表 3 不同土层土壤有机碳各向异性半方差函数模型及其参数											
土层	主轴	模型	块金值	基台值	主轴变程	亚轴变程	各向	块金值/基台值(C	。/ 决定	残差	
深度/cm	方向/(°)	快型	(C_0)	(C_0+C)	A_{0}/m	A_1/m	异性比	(C_0+C)	系数 R ²	RSS	
0-10	0	指数模型	0.116	0.698	3803	1173	3.242	0.166	0.472	0.408	
	45	指数模型	0.113	0.695	2196	2196	1.000	0.163	0.473	0.644	
	90	指数模型	0.113	0.695	2196	2196	1.000	0.163	0.473	0.644	
	135	指数模型	0.117	0.723	2996	1803	1.662	0.162	0.471	0.588	
10-20	0	指数模型	0.158	1.062	5845	2254	2.593	0.149	0.479	0.620	
	45	指数模型	0.141	0.889	2667	2667	1.000	0.159	0.484	0.771	
	90	指数模型	0.143	0.941	2917	2917	1.000	0.152	0.484	0.772	
	135	指数模型	0.142	1.052	4092	2722	1.503	0.135	0.482	0.714	
20-40	0	指数模型	0.194	1.164	6273	1983	3.163	0.167	0.445	0.796	
	45	指数模型	0.182	0.990	2757	2757	1.000	0.184	0.448	1.130	
	90	指数模型	0.181	0.959	2617	2617	1.000	0.189	0.448	1.130	
	135	指数模型	0.182	1.148	4058	2788	1.456	0.159	0.447	1.080	

3.3 土壤有机碳的空间分布特征

通过上述半方差函数理论模型及其相关参数,利 用 ArcGIS 10.2 软件的克里格插值法对排露沟流域 不同土层土壤有机碳进行空间插值分析,得到土壤有

机碳含量空间分布(图3)。从图3中可以看出,流域 内阴坡土壤有机碳含量明显高于阳坡,高海拔地区土 壤有机碳含量高于低海拔地区。

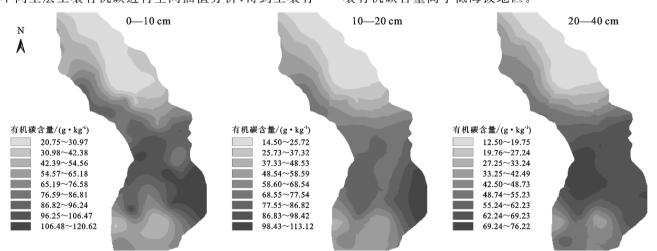
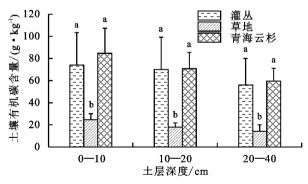


图 3 不同土层土壤有机碳空间分布

3.4 植被类型对土壤有机碳空间异质性的影响


从图 4 可以看出,不同植被类型下土壤有机碳含 量不同。在 0-10,10-20,20-40 cm 土层中,青海 云杉土壤有机碳含量分别为 84.77,70.11,59.59 g/ kg;灌从分别为 74.12,69.96,56.06 g/kg;草地分别 为 24.81,18.17,14.22 g/kg。不同植被有机碳含量变 化范围分别为:青海云杉为 39.55~137.33 g/kg;灌 丛为 25.00~135.25 g/kg; 草地为 10.98~36.01 g/

kg。在 0-10,10-20,20-40 cm 不同土层间,土壤 有机碳的含量均表现为青海云杉>灌从>草地。青 海云杉显著高于灌丛和草地(P < 0.05),灌丛显著高 于草地(P<0.05)。

讨论

在森林生态系统中,土壤有机碳受到各种因素间 的相互影响,其中气候、植被类型、土壤质地以及人 为因素等的互作效应,都使得土壤有机碳的数量存

在很大差异。研究结果表明,研究区土壤有机碳空间 分布差异较大,随土层垂直深度增加而逐渐降低, 灌从、草地和青海云杉不同植被之间有机碳含量差 异显著,这与马文瑛等[7]的研究结果一致,土壤表层 覆盖着大量的枯落物,随着土层加深,枯落物和植被 根系分布逐渐减少,导致土壤有机碳含量减少,从而 影响了土壤有机碳的垂直分布特征。不同植被之间 植物根系长度和分布均不同,青海云杉根系发达,较 灌从和草地更加密集,因此有机碳含量高于灌从和 草地。本研究结果中,在 0-10,10-20,20-40 cm 不同土层间,土壤有机碳的含量均表现为青海云杉> 灌从>草地,青海云杉显著高于灌从和草地(P< 0.05),灌丛显著高于草地(P<0.05),该研究结果与 车宗玺等[16]在祁连山区的研究结论相符[13,24-26]。此 外,本研究表明,流域内阴坡土壤有机碳含量明显高 于阳坡,高海拔地区土壤有机碳含量高于低海拔地 区。青海云杉主要生长在2700~3300 m的阴坡和 半阴坡,草地主要分布在阳坡和半阳坡,随着海拔升 高,降水量增大,土壤含水量增加,抑制了微生物的活 性,影响了动植物残体的分解释放,使得大部分以有 机物形式沉积在土壤中,从而有机碳含量增加[14.27]。 本文仅结合地统计学方法研究了土壤有机碳的变异 特征,有关土壤质地、土壤孔隙度等因素对有机碳的 影响以及运用其他科学方法分析空间变异性还有待 讲一步深入研究。

注:图柱上方小写字母不同表示同一土层深度不同植被间差异达到 P<0.05 显著水平。

图 4 不同植被类型下土壤有机碳含量的差异

5 结论

(1)排露沟流域不同植被有机碳含量变化范围分别 为青海云杉 39.55~137.33 g/kg;灌丛 25.00~135.25 g/kg;草地 10.98~36.01 g/kg。不同土层有机碳含量均属于中等变异,具有强烈的空间自相关性,土壤 有机碳的空间变异主要是由结构性因素,如土壤类型、容重、孔隙度、地形因子等因素引起。

(2)在不同土层,土壤有机碳含量在 45°(东北—

西南),90°(南一北)方向上变异不明显;土壤有机碳在 0(东一西)和 135°(西北一东南)方向上空间变异程度复杂。结合植被空间分布特征可知,不同植被类型、海拔和坡向均影响着土壤有机碳的含量。

参考文献:

- [1] 王棣.秦岭典型林分土壤有机碳组分及其分布特征[D]. 陕西 杨凌:西北农林科技大学,2015.
- [2] 赵安玖,胡庭兴,陈小红.森林类型对土壤表层有机碳空间 异质性的影响[J].自然资源学报,2009,24(10):1749-1756.
- [3] Zhang Z Q, Yu D S, Shi X Z, et al. Priority selection rating of sampling density and interpolation method for detecting the spatial variability of soil organic carbon in China[J]. Environmental Earth Sciences, 2015, 73; 2287-2297.
- [4] 李欣雨,夏建国,鄢广奎,等.名山河流域不同土壤类型和土地利用方式下有机碳的分布特征[J].水土保持学报,2017,31(3):224-230.
- [5] Li B Y, Tang H P, Wu L H, et al. Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia[J]. Environmental Earth Sciences, 2012, 65: 195-202.
- [6] 顾成军,史学正,于东升,等.省域土壤有机碳空间分布的主控因子:土壤类型与土地利用比较[J].土壤学报,2013,50(3):425-432.
- [7] 马文瑛,赵传燕,王超,等.祁连山天老池小流域土壤有 机碳空间异质性及其影响因素[J].土壤,2014,46(3): 426-432.
- [8] Cerri C, Easter M, Paustian K, et al. Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with Roth C and Century models[J]. Agriculture, Ecosystems & Environment, 2007, 122(1):46-57.
- [9] 孙文义,郭胜利,宋小燕.地形和土地利用对黄土丘陵沟 壑区表层土壤有机碳空间分布影响[J].自然资源学报, 2010,25(3):443-453.
- [10] Chen L F, He Z B, Du J, et al. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of north western China[J]. Catena, 2016, 137:37-43.
- [11] 闫丽娟,王海燕,李广,等.黄土丘陵区 4 种典型植被对土壤养分及酶活性的影响[J].水土保持学报,2019,33 (5):190-196,204.
- [12] 刘伟,程积民,高阳,等.黄土高原草地土壤有机碳分布 及其影响因素[J].土壤学报,2012,49(1):68-76.
- [13] 王秀丽,张凤荣,朱泰峰,等.北京山区土壤有机碳分布及 其影响因素研究[J].资源科学,2013,35(6):1152-1158.
- [14] 朱猛,刘蔚,秦燕燕,等.祁连山森林草原带坡面尺度土壤有机碳分布[J].中国沙漠,2016,36(3):741-748.
- [15] 马剑,刘贤德,金铭,等.祁连山青海云杉林土壤理化性

243

- 质和酶活性海拔分布特征[J].水土保持学报,2019,33 (2):207-213.
- [16] 车宗玺,刘贤德,车宗奇,等.祁连山青海云杉林土壤有 机质及氮素的空间分布特征[J].水土保持学报,2014, 28(5):164-169.
- [17] 赵维俊,刘贤德,徐丽恒,等.祁连山青海云杉林动态监测样地土壤 pH 和养分的空间异质性[J].干旱区地理, 2015,38(6):1179-1189,
- [18] 张平,刘贤德,车宗玺,等.祁连山青海云杉林土壤养分 异质性分析[J].干旱区地理,2012,35(4):594-598.
- [19] 王正权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999:71-99.
- [20] 张敏,贺鹏飞,陈伟强.基于 GIS 和地统计学的土壤养分空间变异分析[J].东北农业大学学报,2010,41(3):53-58,
- [21] 薛志婧,侯晓瑞,程曼,等.黄土丘陵区小流域尺度上土 壤有机碳空间异质性[J].水土保持学报,2011,25(3):

161-168.

- [22] 张梦薇,吕成文.丰乐河流域表层土壤有机碳空间变异特征研究[J].长江流域资源与环境,2018,27(7):1576-1583.
- [23] 李莉,贾宝顺,习红昂,等.小尺度下浓香型烟区土壤微量元素的空间变异性[J].中国农学通报,2011,27(1): 105-110.
- [24] 牛赟,刘贤德,赵维俊,等.祁连山青海云杉(*Picea crassifolia*)林浅层土壤碳、氮含量特征及其相互关系[J].中国沙漠,2014,34(2):371-377.
- [25] 王凤,孟浩峰,侯德明,等.黑河上游冰沟流域3种林地 土壤有机碳分布特征与土壤特性的关系[J].草业科学, 2015,32(4):640-646.
- [26] 杨敏,杨飞,杨仁敏,等.祁连山中段土壤有机碳剖面垂直 分布特征及其影响因素[J].土壤,2017,49(2):386-392.
- [27] 曾立雄,雷蕾,王晓荣,等.海拔梯度对祁连山青海云杉 林乔木层和土壤层碳密度的影响[J].生态学报,2018, 38(20):7168-7177.

(上接第 237 页)

- [8] 侯贵荣,毕华兴,魏曦,等.黄土残塬沟壑区3种林地枯落物和土壤水源涵养功能[J].水土保持学报,2018,32 (2):357-363,371.
- [9] 常译方,毕华兴,许华森,等.晋西黄土区不同密度刺槐 林对土壤水分的影响[J].水土保持学报,2015,29(6): 227-232.
- [10] 阿茹·苏里坦,常顺利,张毓涛.天山林区不同群落土壤水分入渗特性的对比分析与模拟[J].生态学报,2019,39(24):1-8.
- [11] 陈文媛,张少妮,华瑞,等.黄土丘陵区林草恢复进程中 土壤入渗特征研究[J].北京林业大学学报,2017,39 (1):62-69.
- [12] 宋爱云,董林水,刘世荣,等.不同亚高山草甸群落类型的土壤入渗特征及影响因素[J].水土保持研究,2018,25(3):41-45.
- [13] 周健民,沈仁芳.土壤学大辞典[M].北京:科学出版社, 2013.
- [14] 周巧稚,毕华兴,孔凌霄,等.晋西黄土区不同密度刺槐 林枯落物层水文生态功能研究[J].水土保持学报, 2018,32(4):115-121.

- [15] 刘骏,杨清培,余定坤,等.细根对竹林一阔叶林界面两侧土壤养分异质性形成的贡献[J].植物生态学报,2013,37(8):739-749.
- [16] 赵小婵.华北土石山区不同密度人工油松林地土壤水 分入渗研究[D].河北 保定:华北电力大学,2016.
- [17] 王琛,吴云飞,李甜江,等.金沙江不同林分的土壤入渗特征研究[J].西部林业科学,2019,48(3):69-77.
- [18] 林代杰,郑子成,张锡洲,等.不同土地利用方式下土壤 人渗特征及其影响因素[J].水土保持学报,2010,24 (1):33-36.
- [19] 刘目兴,聂艳,于婧.不同初始含水率下粘质土壤的人 渗过程[J].生态学报,2012,32(3):871-878.
- [20] 查同刚.土壤理化分析[M].北京:中国林业出版社, 2017.
- [21] Abid M, Lal R. Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration[J]. Soil and Tillage Research, 2009, 103(2):364-372.
- [22] 郑凯利,邓东周.若尔盖湿地土壤入渗性能及其影响因素[J].水土保持研究,2019,26(3):179-191.