六盘山半干旱区华北落叶松林土壤水分时空变化与影响因素

韩新生1,2,王彦辉2,于澎涛2,熊伟2,李振华3,蔡进军1,许浩1

(1.宁夏农林科学院荒漠化治理研究所,宁夏防沙治沙与水土保持重点实验室,银川 750002;

2. 中国林业科学研究院森林生态环境与保护研究所,国家林业和草原局森林生态环境重点实验室,北京 100091; 3. 新乡学院生命科学技术学院,河南 新乡 453000)

摘要:分析森林土壤湿度时空变异规律,研究植被蒸腾、林地蒸散和气象因子对土壤湿度的影响,对干旱地区的植被恢复、林水协调管理和植被生态水文功能提升都有重要意义。在宁夏六盘山北侧半干旱的叠叠沟小流域,建立了华北落叶松人工林标准样地,利用气象站、热扩散探针、微型蒸渗仪、时域反射仪等设备,同步监测了 2013 年 7—10 月的气象条件、林木蒸腾、林地蒸散、土壤湿度的动态变化,并分层(0—20,20—40,40—60,60—80 cm)探讨了土壤湿度的主要影响因子。结果表明:(1)受随机降雨事件影响,土壤湿度呈现相应的脉冲性变化;整体而言,表层(0—20 cm)土壤湿度(32.69%)较低,以下各层较高(40.00%左右);土壤湿度的变异程度随土层加深和降雨增大而逐渐减弱。(2)影响土壤湿度的主要气象因子为温度、饱和水汽压差和气压;林木蒸腾和林地蒸散与整个研究期间主根系层(0—60 cm)土壤湿度的相关性显著。(3)土壤湿度与各因子的相关系数随土层加深而变小,在主根系层明显,在以下土层(60—80 cm)不明显。综上可知,森林土壤湿度同时受降水输入和蒸散输出影响,各土层湿度的时间变化规律相似;但表层土壤的湿度低、变幅大,土壤湿度对影响因子的响应敏感性和变幅随土层加深而逐步缩小。

关键词: 土壤湿度; 林地蒸散; 林木蒸腾; 气象条件; 华北落叶松

中图分类号:S152.7 文献标识码:A

文章编号:1009-2242(2019)01-0111-07

DOI:10. 13870/j. cnki. stbcxb. 2019. 01. 019

Temporal and Spatial Variation and Influencing Factors of Soil Moisture in Larix principis-rupprechtii Plantation in Semiarid Liupan Mountains, Northwest China

HAN Xinsheng^{1,2}, WANG Yanhui², YU Pengtao², XIONG Wei², LI Zhenhua³, CAI Jinjun¹, XU Hao¹

(1. Ningxia Key Laboratory of Desertification Control and Soil and Water Conservation,

 $In stitute\ of\ Desertification\ Control\ ,\ Ningxia\ Academy\ of\ Agriculture\ and\ Forestry\ Sciences\ ,$

Yinchuan 750002; 2. Key Laboratory of Forestry Ecology and Environment of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of

Forestry, Beijing 100091; 3. School of Life Science and Technology, Xinxiang University, Xinxiang, Henan 453000)

Abstract: Understanding the temporal and spatial variation of soil moisture of forest and studying the effects of vegetation transpiration, forest floor evapotranspiration and meteorological factors on soil moisture are important to vegetation restoration, integrated forest-water management and the improvement of the eco-hydrological functions of forest/vegetation in the arid regions. A stand plot of Larix principis-rupprechtii plantation was established in the semiarid Diediegou small watershed on the north side of Liupan Mountains, Ningxia. Meteorological conditions, forest transpiration, forest floor evapotranspiration and soil moisture during July to October in 2013 were simultaneously monitored by automatic meteorological station, thermal diffusion probes, micro-lysimeters and time domain reflectometry. The soil moisture was monitored in the layers of 0-20, 20-40, 40-60 and 60-80 cm, to explored the main factors affecting the soil moisture. The results showed that: (1) Affected by the random rainfall events, the soil moisture showed corresponding pulse variation. On the whole, the mean soil moisture (32.69%) of the surface layer (0-20 cm) was relatively lower than that of the layers followed (about 40.00%). The variation range of soil moisture decreased

收稿日期:2018-09-14

资助项目:宁夏回族自治区全产业链创新示范项目(QCYL-2018-12);国家重点研发计划项目(2017YFC0504600;2016YFC0501702);国家自然科学基金项目(41671025);国家科技支撑计划项目(2015BAC01B01);国家林业和草原局宁夏六盘山森林生态定位站和宁夏回族自治区生态修复与多功能林业综合研究中心项目

第一作者:韩新生(1988—),男,博士研究生,主要从事森林生态水文研究。E-mail:hanxs@caf.ac.cn

gradually with the increasing of soil depth and rainfall amount. (2) The main meteorological factors influencing soil moisture were temperature, saturation vapor pressure deficit and atmospheric pressure. The forest transpiration and forest floor evapotranspiration had a significant correlation with the soil moisture of the main root zone (0 – 60 cm) during the whole study period. (3) The correlation coefficients between soil moisture and all the influencing factors decreased with the increasing of soil depth, which were significant in the main root zone, but no longer significant in the soil layers below (60 – 80 cm). In summary, the forest soil moisture was affected by both the precipitation input and evapotranspiration output. The temporal variation of soil moisture in each soil layer was similar. However, the soil moisture of surface layer was low and with a larger variation range. The sensitivity and amplitude of soil moisture to the influencing factors decreased gradually with the increasing of soil depth.

Keywords: soil moisture; forest floor evapotranspiration; forest transpiration; meteorological condition; Larix principis-rup prechtii plantation

土壤水分是土壤一植被一大气连续体中最活跃 的部分,对植物分布与生长、土壤环境和局地气候都 有直接或间接作用[1],并与大气水、地下水等联系紧 密,在生物地球循环中起着纽带作用。在西北干旱半 干旱区,土壤水分往往是限制植被恢复与重建的关 键,与植被蒸腾、土壤蒸发、产流汇流、土壤侵蚀等生 态水文过程关系密切[2]。土壤水分的输入主要来自 大气降水,因此土壤湿度受到雨强、雨量等降水特征 的直接影响[3-4];此外,土壤水分散失受到土壤蒸发、 植被蒸腾、径流输出的共同作用,其中深层土壤水分 减少主要受植被蒸腾和水分渗漏影响。由于土壤湿 度同时受降水输入、蒸散输出、径流输出等水文过程 影响,并与太阳辐射、气温、空气湿度、降水等气象条 件和植被、地形、土壤等多种因素紧密相关,因而变化 比较复杂,需深入理解土壤水分时空变化特征及对主 要影响因子的响应规律,以为该区域的森林植被恢复 和生态系统管理提供理论基础。

目前在土壤湿度变化特征方面做过大量研究,马婧怡等[5]研究黄土丘陵区 6 种土地利用方式 0—300 cm 土层土壤湿度变化,显示土壤湿度随土层深度增加具有明显垂直变化特征且变异系数逐渐减少;刘泽彬等[6]对六盘山半湿润区华北落叶松林坡面土壤湿度时间稳定性的分析显示,土壤湿度的变异程度和平均相对偏差的标准差随土层加深逐渐降低;张敬晓等[7]在陕西米脂县探索了降雨在枣林干化土壤的人渗与迁移规律,将受降雨影响的土壤分为 3 层(0—90 cm 为人渗敏感层,90—160 cm 为人渗迟缓层,160—240 cm 为雨水迁移层);徐志尧等[8]在半干旱黄土丘陵区发现深层土壤水分没有明显季节变化。综合来看,目前对土壤湿度的时间变化特征及受气象条件与植被蒸散影响的研究相对较少,对各因素影响的土壤深度还不清楚,这些问题需进一步探讨。

宁夏六盘山地处半湿润区向半干旱区的过渡带,地带性植被属于森林草原向典型草原的过渡区,生态环境极为敏感和脆弱。华北落叶松(Lasix princi pis-rup pre-

chtii)是该地区的主要造林树种,在水土保持、水源涵养和生态恢复等方面起着关键作用。前人[4,9]已对本区华北落叶松林的林木蒸腾与土壤水势关系、土壤水分的降雨响应等进行过研究,但对土壤湿度时间变化的研究报道还很少。本文在六盘山半干旱区叠叠沟小流域选择典型的华北落叶松人工林,监测土壤湿度的逐日变化,并同步监测林木蒸腾、林地蒸散和气象条件等,分析土壤湿度变化规律及对众多影响因子的响应特征,以为当地基于水资源承载力的植被恢复与管理提供科技支撑。

1 研究区概况

叠叠沟小流域 (106°04′55″—106°09′15″ E, 35°54′12″—35°58′33″ N)位于六盘山北部,行政区划上隶属宁夏回族自治区南部固原市原州区。气候类型为半干旱大陆性季风气候,海拔 1 975~2 615 m, 最大高差 640 m, 东坡和西坡为主要坡向; 年均气温 6~7 \mathbb{C} ,全年无霜期 130 d 左右; 年均降水量 449 mm, 主要集中于 7—9 月。

该小流域的地带性植被属温带草原区的南部森林草原。在长期人为干扰下,形成了多种土地利用方式镶嵌的植被景观格局。乔木林主要是华北落叶松、青海云杉(Picea crassi folia)和北京杨(Populus×beijingensis)等人工林,多分布在阴坡、半阴坡、沟道或坡底处;草地为主要植被类型,以铁杆蒿(Artemisa vestita)、本氏针茅(Stipa bungcana)、凤毛菊(Saussurea amara)和细叶苔草(Carex rigescens)等为主;灌丛呈条带或斑块状镶嵌在草坡上,主要有虎榛子(Ostryopsis davidiana)、绣线菊(Spiraea salici folia)、沙棘(Hippophae ramnoides)等。土壤类型主要为灰褐土,黄土次之;成土母质为页岩、灰岩风化的残积物和坡积物。

2 研究方法

2.1 样地设置

在小流域下游选择典型华北落叶松人工林,设置 1个30 m×30 m 固定样地(35°58′18″N, 106°08′50″E), 其海拔为 2 055 m,坡向北偏西 30°,下坡位,坡度约 11°;林分密度为 1 600 株/hm²,在研究年份 2013 年的林龄为 25 年,林冠郁闭度 0.88,平均树高 10.1 m,平均胸径 10.56 cm;林分结构单一,林下灌木层不明显,生长有少量沙棘等;林下草本层发育较好,盖度 0.78,主要有铁杆蒿、茭蒿(Artemisia giraldii)、羽叶凤毛菊(Saussufea maximowczii)、白颖苔草(Carex rigescens)等。土层较厚,约 2 m以上。

各种观测均在该样地进行,时间为 2013 年 7 月 15 日至 10 月 31 日。

2.2 土壤物理性质测定

在样地附近典型位置挖 3 个土壤剖面,分 0—20,20—40,40—60,60—80 cm 4 层,用体积 100 cm³ 的环刀取土,带回实验室后利用环刀法测定土壤容重、孔隙度、持水量、稳渗速率等物理性质。各土层物理性状见表 1。

表 1	不同:	:层的土	_壤物理性质
-----	-----	------	--------

土层	容重/	总孔	毛管	非毛管	最大	毛管	田间	砾石	稳渗速率/
深度/cm	$(g \cdot cm^{-3})$	隙度/%	孔隙度/%	孔隙度/%	持水量/%	持水量/%	持水量/%	含量/%	$(mm \cdot min^{-1})$
0—20	1.02	58.62	41.56	17.06	57.85	41.03	40.66	8.63	2.39
20-40	1.03	52.41	36.61	15.81	50.97	35.55	35.03	18.60	2.83
40-60	1.00	54.69	37.65	17.03	55.29	37.82	37.28	46.58	3.04
60-80	1.11	51.52	37.06	14.46	46.58	33.70	33.65	53.00	2.24

2.3 气象条件监测

在林外开阔处架设 1 台 Wheatherhawk -232 (Campbell Scientific,美国)自动气象站,同步监测降水量 (P,mm)、空气温度 (T,\mathbb{C}) 、空气相对湿度(RH,%)、大气压(AP,kpa)、太阳辐射强度(ESR,w/m)、风速(W,m/s)、风向(WD,°)等,计算饱和水汽压差 $(VPD,\text{kPa})^{[10]}$ 和潜在蒸散 $(PET,\text{mm})^{[11]}$ 。同时,在样地内设置 1台 LI-1400 小型自动气象站(LI-COR,美国),并连续测定 20,40 cm 深处土壤温度 (\mathbb{C}) 。

2.4 林木蒸腾和林地蒸散测定

在样地内选取 5 株干形通直、生长良好的优势木或亚优势木样树,安装 SF-L树干液流测定仪(Ecomatic,德国)。由于林木边材厚度较小,故选用 20 mm 长的探针,其安装方法、测定原理及数据计算方法见文献[10]。利用 5 株样树液流密度均值作为林分液流密度,基于胸径与边材面积的经验公式[12] 获得单株和林分边材面积,并以此为标量上推估计林分蒸腾量(ES,mm)。在样地内选择代表草本层种类和盖度及林冠遮蔽状况的地点 5 个,安装微型蒸渗仪(内径 20 cm、深 35 cm,筒底带筛孔,下方放置容器收集渗漏水),蒸渗仪内筒装填未扰动的原状枯落物、土柱和草本植物。每天固定时间(8:00)称重 1次,根据前后 2 天称重差值(kg)及 1 天内的降水量(mm)、渗漏水量(mm)计算各日林地蒸散量(EF,mm)。

2.5 土壤湿度监测

采用 TDR 时域反射仪(Time Domain Reflectometry,德国)长期定位监测土壤湿度。在样地内选择 3 处典型点位安装 TDR 测管,每日固定时间(8:00) 读数,依林木根系分布,分 0—20,20—40,40—60,60—80 cm 土层,将 3 个测点均值作为样地土壤体积 含水量。

2.6 数据处理

采用 Excel 2010 和 SPSS 19.0 软件处理分析数据。

3 结果与分析

3.1 降水量和土壤湿度的日变化

由图 1 可知,研究期间总降水量 412 mm,但集中在 7月 15 日到 8月 7日(157 mm,占比 38.11%)、8月 22 日至 9月 23日(219 mm,53.16%)2个时段,其余时间降雨很少,仅占 8.75%。受脉冲式降雨事件影响,各土层湿度呈对应变化,在降水间隔期受蒸散耗水等影响而逐渐减少,其中表层(0—20 cm)变幅最大,其均值也低于其他各层,呈现土壤湿度变幅随土层加深而减小但均值增加的变化趋势。

3.2 各土层湿度变化的统计分析

由表 2 可知,研究期间 0—80 cm 土层的体积含水量平均为 38.05%,极差为 17.44%。表层湿度均值最小(32.69%),其下各层都在 40%左右,变化不大。各层体积含水量最大值的深度变化规律与均值相似,最小值随土层加深逐渐增大,极差的土层变化与最小值相反。在各月之间,0—80 cm 土层体积含水量的均值为 7 月(40.65%)>9 月(38.93%)>10月(38.13%)>8 月(35.69%),最大值为 9 月>7 月>8月>10月,最小值为 7 月>10月>9月>8月,极差表现与最小值相反。0—20,20—40,40—60 cm 土层的土壤湿度月变化与0—80 cm 相同,但 60—80 cm 土层体积含水量均值的月变化为 7 月>10 月>9 月>8月;表层土壤体积含水量的最大值和最小值均表现为 7 月>9 月>10 月>8月,其他各层均与 0—80 cm 相同;各土层体积含水量的极差月际变化与 0—80 cm 相同。

在7月,各层体积含水量的均值、最大值随土层加深均呈先升高后轻微降低的变化,峰值均出现在20—40 cm;最小值的土层变化为先快速增加后缓慢

增加,极差表现出与最小值相反的土层变化。在8月,各层体积含水量均值随土层加深逐渐增大,但增幅渐小;最大值表现出先增大后轻微减小的变化,峰值(44.63%)出现在20—40 cm;最小值(极差)呈现出与均值相同(相反)的深度变化。在9月,各层体积

含水量均值、最大值、最小值随土层加深均呈现先升高后轻微降低的变化,最高值出现在 20—40,40—60 cm;极差的土层变化为先急剧减小后轻微减小。在 10 月,各层体积含水量的均值、最大值、最小值、极差的土深变化与 9 月相似。

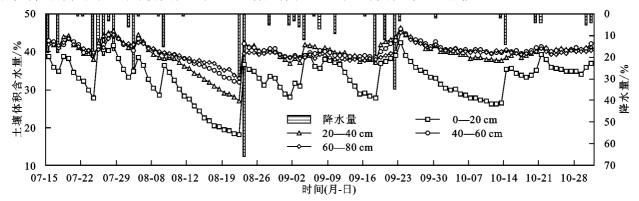


图 1 降水量和各土层体积含水量的逐日变化

标准差与变异系数(CV)分别表示绝对变异和相对变异大小。

由表 2 可知,各土层的标准差均小于 7,月份差 异表现为 8 月>9 月>7 月>10 月,随土层加深逐渐 减小。依据变异性强弱分级(CV≤10%为弱;10%< CV<100%为中等;CV≥100%为强),8月属中等变异性,7,9,10月属弱变异性;各土层变异性的月份差异与标准差相同;各月及研究期间 0—20 cm 和 8月的 20—40 cm 属中等变异性,其余均为弱变异性,随土层加深逐渐减小。

测定时间	土层深度/cm	最大值/%	最小值/%	极差/%	平均值/%	标准差	变异系数/%
	0-20	42.63	18.00	24.63	32.69	5.40	16.53
	20-40	46.27	27.00	19.27	39.53	3.58	9.07
研究期间	40-60	46.07	32.00	14.07	40.16	2.42	6.02
	60—80	45.07	33.00	12.07	39.82	2.03	5.09
	0—80	44.94	27.50	17.44	38.05	3.18	8.35
	0-20	42.63	27.70	14.93	36.23	4.18	11.53
	20-40	45.43	37.87	7.57	42.28	2.05	4.86
7月	40-60	44.40	39.60	4.80	42.12	1.41	3.34
	60—80	44.40	39.83	4.57	41.97	1.22	2.92
	0—80	43.95	36.25	7.70	40.65	2.04	5.03
	0-20	38.60	18.00	20.60	28.96	6.32	21.83
	20-40	44.63	27.00	17.63	36.79	4.85	13.18
8月	40-60	43.40	32.00	11.40	38.37	3.10	8.08
	60—80	42.53	33.00	9.53	38.64	2.30	5.96
	0—80	42.29	27.50	14.79	35.69	4.08	11.44
	0-20	42.37	27.73	14.63	34.80	3.92	11.27
	20-40	46.27	37.00	9.27	40.72	2.43	5.97
9 月	40-60	46.07	38.43	7.63	40.58	2.13	5.25
	60—80	45.07	37.60	7.47	39.61	2.12	5.37
	0—80	44.94	35.35	9.59	38.93	2.37	6.10
	0-20	39.20	26.27	12.93	32.43	3.87	11.94
	20-40	41.30	37.60	3.70	39.62	1.14	2.87
10 月	40-60	42.10	39.47	2.63	40.46	0.53	1.32
	60—80	40.83	39.20	1.63	40.02	0.44	1.09
	0—80	40.63	35.81	4.82	38.13	1.29	3.39

表 2 不同层次土壤湿度的统计特征

3.3 各土层湿度的气象条件响应

由表 3 可知,在研究期间和不同月份(除 7 月的 土温和气压、9 月的温度、风向和潜在蒸散外)基本 呈现为气象因子对土壤湿度的作用随土层加深逐 渐减弱。

研究期间,0-80 cm 平均体积含水量与气压相

关不显著(P>0.05),与太阳辐射和风向相关显著(P<0.05),与其他气象因子相关极显著(P<0.01)。表层土壤湿度与气压相关显著(P<0.05),与其他气象因子相关极显著(P<0.01);20—40 cm 土壤湿度与气压相关不显著(P>0.05),与空气相对湿度、太阳辐射、风速和风向相关显著(P<0.05),与其他气

象因子相关极显著(P < 0.01); 40 - 60 cm 土壤湿度与温度和饱和水汽压差相关极显著(P < 0.01), 与潜在蒸散、太阳辐射和风向相关显著(P < 0.05), 与其

他气象因子相关不显著(P>0.05);60—80 cm 土壤湿度与 20 cm 土壤温度相关显著(P<0.05),与其他气象因子相关不显著(P>0.05)。

表 3 各土层湿度与气象条件的相关系数

测定时间	土层深度/cm	Т	T_{\min}	$T_{ m max}$	T_{20}	T_{40}	RH	AP	PET	ESR	W	WD	VPD
	0-20	-0.393 * *	-0.209 * *	-0.390 * *	-0.326 * *	-0.283 * *	0.378 * *	0.210 *	-0.360 * *	-0.282 * *	-0.362 * *	-0.281 * *	-0.473 * *
	20-40	-0.312 * *	-0.252 * *	-0.304 * *	-0.289 * *	-0.269 * *	0.240 *	0.160	-0.287 * *	-0.244 *	-0.237 *	-0.226 *	-0.361 * *
研究期间	40-60	-0.301 * *	-0.260 * *	-0.278 * *	-0.298 * *	-0.286 * *	0.140	0.164	-0.243 *	-0.202*	-0.155	-0.200*	-0.285 * *
	60-80	-0.176	-0.157	-0.149	-0.189 *	-0.186	-0.002	0.059	-0.097	-0.051	0.062	-0.118	-0.111
	0-80	-0.340 * *	-0.277 * *	-0.328 * *	-0.308 * *	-0.280 * *	0.255 * *	0.175	-0.295 * *	-0.235 *	-0.260 * *	-0.240 *	-0.375 * *
	0-20	-0.642 * *	0.154	-0.584 *	-0.698 * *	-0.364	0.496 *	0.641 * *	-0.578 *	-0.490 *	-0.653 * *	-0.515 *	-0.526 *
	20 - 40	-0.581*	0.059	-0.486 *	-0.837 * *	-0.577 *	0.341	0.783 * *	-0.435	-0.366	-0.477	-0.430	-0.386
7月	40 - 60	-0.344	-0.008	-0.216	-0.807 * *	-0.749 * *	0.050	0.800 * *	-0.250	-0.176	-0.353	-0.097	-0.110
	60-80	-0.302	-0.082	-0.131	-0.798 * *	-0.738 * *	-0.128	0.822 * *	-0.075	-0.036	-0.165	0.083	0.035
	0-80	-0.579 *	0.080	-0.478	-0.826 * *	-0.571 *	0.329	0.786 * *	-0.459	-0.378	-0.540 *	-0.376	-0.380
	0 - 20	-0.369 *	-0.193	-0.189	-0.438 *	-0.374 *	0.323	0.056	-0.076	-0.162	-0.149	-0.298	-0.358 *
	20 - 40	-0.315	-0.174	-0.141	-0.385 *	-0.352	0.257	0.018	-0.015	-0.115	-0.068	-0.278	-0.296
8月	40 - 60	-0.297	-0.155	-0.130	-0.365 *	0.340	0.233	0.004	0.012	-0.088	-0.033	-0.276	-0.271
	60-80	-0.234	-0.178	0.005	-0.406 *	-0.462 * *	0.030	-0.105	0.159	0.079	0.080	-0.150	-0.084
	0—80	-0.326	-0.181	-0.139	-0.410 *	-0.379 *	0.250	0.013	-0.009	-0.103	-0.073	-0.271	-0.290
	$0 -\!\!\!\! -20$	-0.637 * *	-0.680 * *	-0.341	-0.600 * *	-0.384 *	0.076	0.656 * *	-0.186	0.234	-0.298	-0.211	-0.228
	20 - 40	-0.717 * *	-0.800 * *	-0.421 *	-0.794 * *	-0.631 * *	-0.026	0.630 * *	-0.288	0.127	-0.138	-0.242	-0.191
9月	40-60	-0.669 * *	-0.752 * *	-0.383 *	-0.866 * *	-0.771 * *	-0.157	0.515 * *	-0.217	0.065	0.043	-0.223	-0.097
	60-80	-0.662 * *	-0.679 * *	-0.381 *	-0.880 * *	-0.774 * *	-0.206	0.577 * *	-0.165	0.088	0.023	-0.162	-0.067
	0—80	-0.745 * *	-0.806 * *	-0.419 *	-0.842 * *	-0.666 * *	-0.056	0.677 * *	-0.236	0.164	-0.144	-0.235	-0.180
	0-20	-0.831 * *	-0.799 * *	-0.690 * *	-0.922 * *	-0.877 * *	0.543 * *	0.434 *	-0.532 * *	-0.322	-0.365 *	-0.149	-0.764 * *
	20-40	-0.506 * *	-0.391*	-0.472 * *	-0.698 * *	-0.761 * *	0.336	0.065	-0.288	-0.249	-0.237	0.135	-0.477 * *
10月	40-60	-0.353	-0.209	-0.419 *	-0.383 *	-0.395 *	0.420 *	0.028	-0.249	-0.319	-0.247	-0.073	-0.375 *
	60-80	0.204	0.299	0.047	0.335	-0.361 *	0.067	-0.222	0.107	-0.030	0.083	-0.091	0.108
	0-80	-0.752 * *	-0.680 * *	-0.659 * *	-0.854 * *	-0.833 * *	0.529 * *	0.323	-0.478 * *	-0.331	-0.344	-0.098	-0.706 * *

注:* 为 P<0.05; * * 为 P<0.01; T 为日均气温(\mathbb{C}); T_{\min} 为日最低气温(\mathbb{C}); T_{\max} 为日最高气温(\mathbb{C}); T_{20} 为日均 20 cm 土温(\mathbb{C}); T_{40} 为日均 40 cm 土温(\mathbb{C}); RH 为日均空气相对湿度(\mathbb{C}); AP 为日均气压(\mathbb{C}); PET 为日潜在蒸散量(\mathbb{C}); ESR 为日均太阳辐射强度(\mathbb{C}); ESR 为日均风速(\mathbb{C}); ESR 为日均太阳辐射强度(\mathbb{C}); ESR 为日均风速(\mathbb{C}); ESR 为日均和水汽压差(\mathbb{C}); ESR 为日均风速(\mathbb{C}); ESR 为日均气流(\mathbb{C}); ESR 为日均定(\mathbb{C}); ESR 为日均气流(\mathbb{C}); ESR 为日均流(\mathbb{C}); ESR

7月,表层土壤湿度与日最低气温和 40 cm 土温 相关不显著(P>0.05),与其他气象因子相关显著(P<0.05)或极显著(P<0.01);20—40,0—80 cm 土壤湿度 与 20 cm 土温、气压、日均温和 40 cm 土温相关极显著 (P < 0.01)或显著(P < 0.05),与其他气象因子相关不显 著(P>0.05); 40-60, 60-80 cm 土壤湿度与土温和气 压相关极显著(P < 0.01),与其他气象因子相关不显著 (P>0.05)。8月,各层土壤湿度与 20 cm 土温相关显著 (P<0.05),表层土壤湿度与日均温、40 cm 土温和饱 和水汽压差相关显著(P < 0.05),60—80 cm 土壤湿度与 40 cm 土温相关极显著(P < 0.01),0—80 cm 土壤湿度 与 40 cm 土温相关显著(P < 0.05),各层与其他气象因 子相关不显著(P>0.05)。9月,各层土壤湿度与日均 温、日最低温度、土温和气压相关极显著(P<0.01),与 日最高温度相关显著(P<0.05),与其他气象因子相关 不显著(P>0.05)。10月,0—80 cm 土壤湿度与气压、 太阳辐射、风速和风向相关不显著(P>0.05),表层土壤 湿度与太阳辐射和风向相关不显著(P>0.05),0-80cm 和表层土壤湿度与其他气象因子相关显著(P< 0.05)或极显著(P<0.01);20—40 cm 土壤湿度与温度

和饱和水汽压差相关极显著(P<0.01),与其他气象因子相关不显著(P>0.05);除 40—60 cm 土壤湿度与日最高气温、土温、空气相对湿度、饱和水汽压差及 60—80 cm 土壤湿度与 40 cm 土温相关显著(P<0.05)外,这 2层土壤湿度与其他气象因子相关不显著(P>0.05)。

3.4 各土层湿度对林木蒸腾和林地蒸散的响应

由图 2 可知,林木蒸腾和林地蒸散日间波动幅度较大,但整体呈逐渐减小趋势。研究期间林木总蒸腾为 58.96 mm,7,8,9,10 月均值分别为 0.71,0.84,0.49,0.21 mm/d;而林地总蒸散为 160.39 mm,7,8,9,10 月均值分别为1.56,2.16,1.24,0.95 mm/d。

由表 4 可知,研究期间和各月均表现为林木蒸腾和林下蒸散对土壤湿度的影响随土层加深逐渐变弱。研究期间,60—80 cm 土壤湿度与两者相关均不显著 (P>0.05),其他土层与两者相关极显著(P<0.05),其他土层与两者相关极显著(P<0.05),其他土层相关不显著(P>0.05);8月,除表层土壤湿度与林地蒸散相关显著(P<0.05);9月,各层土壤湿度与两者相关均不显著(P>0.05);9月,各层土壤湿度与两者相关均不显著(P>0.05);10

月,表层和 0—80 cm 土壤湿度与两者及 20—40 cm 土壤湿度与林地蒸散相关极显著(P<0.01),60—80

cm 土壤湿度与林木蒸腾相关显著(P<0.05),其余各层与两者相关均不显著(P>0.05)。

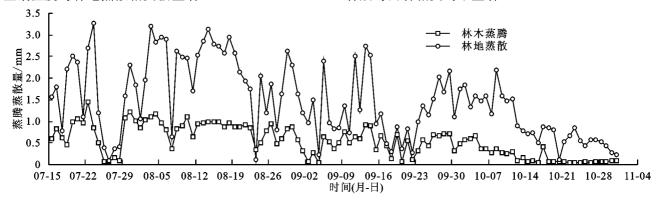


图 2 林木蒸腾和林地蒸散的日变化特征

表 4 各层土壤湿度与林木蒸腾、林地蒸散的相关系数

土层			ES		EF					
深度/cm	研究期间	7月	8月	9月	10 月	研究期间 7月	8月	9月 10月		
0-20	-0.312**	-0.588*	-0.284	0.013	-0.570 * *	-0.444 * * -0.539 *	-0.360*	-0.069 -0.737**		
20-40	-0.255 * *	-0.454	-0.217	-0.010	-0.274	-0.373** -0.407	-0.287	-0.116 -0.500 * *		
40-60	-0.228*	-0.233	-0.210	-0.004	-0.066	-0.316** -0.286	-0.246	-0.041 -0.274		
60—80	-0.091	-0.087	-0.073	0.015	-0.428*	-0.156 -0.147	-0.125	0.045 - 0.267		
0—80	-0.262**	-0.468	-0.224	0.005	-0.456 * *	-0.379** -0.449	-0.289	-0.058 -0.667**		

注:ES 为林木日蒸腾量(mm);EF 为林地日蒸散量(mm)。

4 讨论

4.1 土壤水分时空变化特征

在干旱地区,土壤湿度直接影响植被生长与分布,其时空变化主要受气象条件和蒸散、植被特征、水分运移等的影响。土壤水分的损失途径包括向上的植被蒸腾和土壤蒸发以及向下的下渗(渗漏)等,补给途径主要是降水和少量坡面汇流,因而脉冲性的雨水输入直接导致土壤湿度变化呈波浪状。杨磊等[13]、唐敏等[14]研究典型植被和不同土地利用类型的土壤湿度动态变化,其结果与本研究相同。

雨水在降到林地后输入土壤的深层下移过程中,由于沿途不断补充土壤水分而使可继续下移的数量逐渐减小;植被根系数量沿土层深度增加而减少,使其吸收土壤水分数量从表层向下也减少;地表土壤蒸发也是首先消耗表层和浅层土壤水分;这些作用机制共同导致土壤湿度的变幅从表层向下而逐渐减小(图1)。在本研究中,表层土壤体积含水量总体上低于下层,这与更干旱的黄土丘陵区和祁连山西段草地的研究结果相反[15-16],这可能与其气候差别(降水量、蒸散能力)和植被根系深度分布特点等有关。

土壤水分运动过程极为复杂,受土壤结构、性质等影响,不同地点的土壤理化性质深度变化与环境条件等的差异,会导致土壤湿度的土层变化规律不同。在本研究中,随生长季延长,土壤湿度呈波浪状变化,但土壤湿度变幅随土层加深而逐渐减小。徐志尧等[8]在半干旱黄土丘陵区的研究中也表明土壤湿度

的季节性变化随土层加深而逐渐减弱;岳宏昌等[17] 在黄土丘陵沟壑区、曾泽群等[18]在科尔沁沙地东南 部边缘地带的研究结果也与此相似,这是降雨等气象 条件、土壤蒸发、植被蒸腾等共同作用的结果。各土 层的土壤湿度变化除受上述条件影响外,也受土壤自 身物理特性影响,如土壤孔隙度和持水量越大时,土 壤水分流动越快。在本研究的土壤物理性质中(表 1),土壤容重与稳渗速率的变化相对较小,其他物理 性质变化均较大,土壤物理性质深度分布的差异可能 也是引起水分时空变化的原因之一。

4.2 土壤水分变化对影响因子的响应

受土地利用、微地形、气象条件、林木年龄、植被 类型和生长耗水(植被蒸腾、土壤蒸发)、管理措施等 的综合作用,土壤湿度的时空变化极为复杂。本研究 主要讨论了土壤湿度变化受气象条件、林木蒸腾和林 地蒸散等的影响。

各因子对主根系层(0—60 cm)土壤湿度有不同程度的作用,对主根系层以下的60—80 cm 土层,其土壤湿度除与各月的土温、9月气温和气压、7月气压呈相关显著(P<0.05)或极显著(P<0.01)外,与其他气象因子相关不显著(P>0.05);除在10月与林木蒸腾相关显著(P<0.05)外,在其他时间与林木蒸腾和林地蒸散相关不显著(P>0.05)。表明各因子对60—80 cm 土壤湿度的影响相对较小,这可能与华北落叶松根系主要分布在0—60 cm 有关。林木蒸腾和林地蒸散直接影响主根系层的土壤湿度,但其影响

随土层加厚而逐渐减弱。

在研究期间,影响土壤湿度的气象因子主要是温度、潜在蒸散、太阳辐射和饱和水汽压差等。但是,影响各月份不同深度土层的土壤湿度变异的主导因子存在差异,可能是因水分输入不均衡(降雨分配不均)、各土层水分对林分蒸散的贡献差异、林木生长节律差异等共同作用的结果,但仍能看出温度是影响土壤湿度时空变化的主导因子。庄家尧等[19]在南京市郊区东善桥林场的研究表明,栎林和草地 0—30 cm 土壤湿度变化量主要受空气温湿度等的影响,与本研究结果基本相同。从观测月份看,10月的林木蒸腾和林地蒸散与各层土壤湿度的相关程度多数强于其他各月,可能是因 10 月降雨天数和降雨量均较小导致的。

本文仅初步分析了生长季中后期的土壤湿度日变化情况,未来需扩展研究的时间尺度,如加强多年、整个生长季的研究以及日内变化研究。另外,本研究仅是通过相关分析而初步研究了土壤湿度对气象条件、蒸散输出变化的响应,以后应加强土壤水分平衡动态过程的细致刻画,理解和量化立地特征、植被结构、地被物覆盖、土壤特性、气象条件(降水、温度、潜在蒸散)等对土壤水分变化的作用机理。

5 结论

- (1)受随机降雨事件影响,土壤湿度变化呈波浪状。表层土壤湿度较低,平均32.69%,而其他土层均在40%左右,变异程度随降雨输入增大和土层加深而逐渐减弱。
- (2)影响土壤湿度的主导气象因子存在月份和土层深度差异,在整个研究期间为温度和饱和水汽压差,在7,8,9,10月分别为土温和气压、土温、温度和气压、温度和饱和水汽压差;对各土层的主导气象因子均为温度。
- (3)林木蒸腾和林下蒸散对土壤湿度的作用弱于气象条件。研究期间两者与主根系层(0—60 cm)土壤湿度相关显著,其中 10 月份两者对土壤湿度的作用强于其他月份;相关关系随土层加深和降雨增多而变弱。
- (4)各因子对土壤湿度的影响随土层加深而变弱,在主根系层明显,以下土层不明显。

参考文献:

- [1] 李谦,郑锦森,朱青,等. 太湖流域典型土地利用类型土壤水分对降雨的响应[J]. 水土保持学报,2014,28(1):6-11.
- [2] Tyagi J V, Kumar R, Srivastava S L, et al. Effect of micro-environmental factors on natural regeneration of Sal (Shorearobusta) [J]. Journal of Forestry Research, 2011, 22(4): 543-550.

- [3] 侯贵荣,余新晓,刘自强,等.不同降雨强度下北京山区 典型林地土壤水分时空变化特征[J].水土保持学报, 2017,31(3):209-215.
- [4] 王正安, 邸利, 王彦辉, 等. 六盘山半干旱区华北落叶松 林土壤水分对降雨的响应[J]. 干旱区资源与环境, 2018, 32(4):144-151.
- [5] 马婧怡,贾宁凤,程曼.黄土丘陵区不同土地利用方式下土 壤水分变化特征[J].生态学报,2018,38(10):3471-3481.
- [6] 刘泽彬,王彦辉,徐丽宏,等. 六盘山华北落叶松林坡面的土壤水分时间稳定性[J]. 水土保持学报,2017,31 (1):153-159.
- [7] 张敬晓,汪星,汪有科,等. 黄土丘陵区林地干化土壤降雨入渗及水分迁移规律[J]. 水土保持学报,2017,31 (3):231-238.
- [8] 徐志尧,张钦弟,杨磊.半干旱黄土丘陵区土壤水分生长季 动态分析[J].干旱区资源与环境,2018,32(3):145-151.
- [9] 冯永建,马长明,王彦辉,等.华北落叶松人工林蒸腾特征及其与土壤水势的关系[J].中国水土保持科学,2010,8(1):93-98.
- [10] 王艳兵,德永军,熊伟,等. 华北落叶松夜间树干液流特征及生长季补水格局[J]. 生态学报,2013,33(5):1375-1385.
- [11] Li Z H, Yu P T, Wang Y H, et al. A model coupling the effects of soil moisture and potential evaporation on the tree transpiration of a semi-arid larch plantation [J]. Ecohydrology, 2017, 10(1): e1764.
- [12] 曹恭祥.宁夏六盘山华北落叶松人工林与华山松天然 次生林蒸散特征对比研究[D]. 呼和浩特:内蒙古农业 大学,2010.
- [13] 杨磊,张涵丹,陈利顶. 黄土宽梁缓坡丘陵区次降雨对土壤水分补给效率与阈值研究[J]. 中国科学:地球科学,2018,48(4):457-466.
- [14] 唐敏,赵西宁,高晓东,等. 黄土丘陵区不同土地利用类型土壤水分变化特征[J]. 应用生态学报,2018,29(3):765-774.
- [15] 蔡进军,张源润,潘占兵,等.宁夏黄土丘陵区苜蓿土壤水分的时空变异特征[J].水土保持研究,2016,23(1):75-79.
- [16] 车宗玺,李进军,汪有奎,等. 祁连山西段草地土壤温度、水分变化特征[J]. 生态学报,2018,38(1):105-111.
- [17] 岳宏昌,王玉,李缠云,等. 黄土丘陵沟壑区土壤水分垂直分布研究[J]. 水土保持通报,2009,29(1):66-69.
- [18] 曾泽群,雷泽勇,魏晓婷.基于水分变化的沙地樟子松人工林土壤分层特征[J].干旱区资源与环境,2017,31 (12):161-165.
- [19] 庄家尧,杨静,李垚,等. 南京城郊栎林与草地不同层次 土壤含水量的变化规律[J]. 林业科学,2012,48(12): 101-108.