子午岭林区两种天然次生林叶片 C、N、P 化学计量特征的季节变化

李茜^{1,2},曹扬^{3,4},彭守璋^{3,4},陈云明^{3,4}

(1.中国科学院教育部水土保持与生态环境研究中心,陕西杨凌 712100;2.中国科学院大学,北京 100049;3.西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100;

4. 中国科学院水利部水土保持研究所,陕西 杨凌 712100)

摘要:为阐明不同天然林叶片 C、N、P 化学计量特征及季节变化规律,了解植物对环境的适应策略,以陕西 省子午岭林区桥山林场的油松和辽东栎天然次牛林为研究对象,对其牛长季内不同月份叶片的 C、N、P 含 量及其计量比进行了分析。结果表明:(1)油松叶片 C、N、P 含量及其计量比分别为 48.06%,1.15%, 0.11%和42.58,473.22,11.02,辽东栎叶片C、N、P含量及其计量比分别为43.16%,2.10%,0.19%和 25.47,380.18,14.49;两树种叶片各指标季节间变异系数表现为C含量最小,P含量最大。(2)两树种叶片 C、N、P含量及其计量比在整个生长季内的变化规律不一致,油松叶片C含量在4-6月显著下降,之后保 持平稳状态,8月后显著上升,至10月基本与4月持平;而辽东栎叶片C含量在整个生长季内变化不明显。 油松叶片 N 含量在 6 月前较稳定,6-8 月显著下降,随后显著上升,至 10 月基本与 6 月持平;辽东栎叶片 N含量在4-6月显著下降,随后保持稳定,8月后再次显著下降,并在10月达到最低值。油松叶片P含量 在 8 月前变化不明显, 8 月后显著上升, 并在 10 月达到最高值; 辽东栎叶片 P 含量在 4 月到 6 月显著下降, 随后基本不变。两树种 C:N和C:P的变化与 N、P浓度相反;油松叶片 N:P在 4-6 月显著下降,6-8 月显著上升,8-10月再次显著下降,辽东栎叶片N:P在6月前显著上升并达到最高值,6-10月显著下 降。(3)叶片C含量和C:N主要受树种的影响,其他各指标受树种与月份交互作用的影响最大。(4)油 松叶片 C 含量显著高于辽东栎,N 含量显著低于辽东栎,因此,C:N 显著高于辽东栎,而辽东栎叶片的 N:P显著高于油松,但P含量和C:P在两者之间无显著性差异。除叶片C含量外,各指标季节间变异系 数均表现为油松小于辽东栎。研究结果丰富了天然林生态化学计量学的研究,同时也为黄土丘陵沟壑区 的森林恢复与管理工作提供了一定的理论依据。

关键词:子午岭林区;天然林;化学计量;季节变化
中图分类号:Q946 文献标识码:A 文章编号:1009-2242(2017)06-0319-07
DOI:10.13870/j. cnki. stbcxb. 2017.06.050

Seasonal Variations of C, N and P Stoichiometric Characteristics in Leaves of Two Natural Secondary Forests in Ziwuling Forest District

LI Xi^{1,2}, CAO Yang^{3,4}, PENG Shouzhang^{3,4}, CHEN Yunming^{3,4}

(1. Research Center of Soil and Water Conservation and Ecological Environment,

Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100;

2. University of Chinese Academy of Science, Beijing 100049; 3. State Key Laboratory of Soil Erosion

and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100; 4. Institute of

Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100)

Abstract: In order to explore the seasonal variations of carbon (C), nitrogen (N) and phosphorus (P) stoichiometric features in leaves of different natural secondary forests and understand the strategies of plant adaptation to the environment, we chose *Piuns tabulae formis and Quercus wutaishania* natural forests in Ziwuling Forest district as study area, and subsequently investigated their C, N and P stoichiometric parameters in leaves from April to October. The results showed: (1) Leaf C, N and P contents and stoichiometric ratios of *P. tabulae formis* were 48.06%, 1.15%, 0.11% and 42.58, 473.22, 11.02, respectively, and the same parameters for *Q. wutaishania* were 43.16%, 2.10%, 0.19% and 25.47, 380.18, 14.49, respectively. There were less seasonal dynamics in leaf C contents and more seasonal dynamics in leaf P contents than others

through the whole growth season. (2) Leaf C content of P. tabulae form is significantly decreased from April to June, then remained stable, but it significantly increased from August to October, which was almost equal to April; while leaf C content of Q. wutaishania was almost constant. Leaf N content of P. tabulae formis remained stable before June, then significantly decreased from June to August, then it significantly increased from August and in October, it was almost equal to April. Leaf N content of Q. wutaishania significantly decreased from April to June, then remained stable, but it significantly decreased again from August and reached the lowest value in October. Leaf P content of P. tabulae formis remained stable before August, then significantly increased and reached the maximum value in October. Leaf P content of Q. wutaishania significantly decreased from April to June, then remained stable. The changes of C: N, C: P of two species were averse to their N, P contents. Leaf N: P of P. tabulae form is significantly decreased from April to June, then significantly increased, and it significantly decreased from August to October. The N : P of Q. wutaishania increased significantly and reached the maximum value before June and then significantly decreased. (3) Factorial analysis showed that leaf C contents and C: N mainly determined by tree species. For other parameters, they were mainly affected by the interaction between tree species and month. (4) Leaf C contents of P. tabulae form is significantly higher than that of Q. wutaishania, however, leaf N content of P. tabulae form is was significantly lower than that of Q. wutaishania, therefore, leaf C: N of P. tabulaeformis was significantly higher than that of Q. wutaishania. However, leaf N : P of Q. wutaishania was significantly higher than that of P. tabulae formis. There was no significant difference in leaf P content and C: P between these two species. The coefficient of seasonal variation of leaf N, P contents and C: N, C: P, N: P of P. tabulae form is were smaller than those of Q. wutaishania. The results could enrich the study of ecological stoichiometry in natural forests, and provide a theoretical basis for the forest restoration and management in the hilly and gully region of Loess plateau.

Keywords: Ziwuling Forest; natural forests; stoichiometry; seasonal variations

生态化学计量学是研究生态系统中多重化学元 素平衡与能量平衡的学科,强调生态系统中主要组成 元素碳(C)、氮(N)、磷(P)等的质量平衡对生态过程 的影响^[1]。C是植物体生理生化反应的底物及能量 来源,N、P参与植物蛋白质和遗传物质的组成,是限 制植物生长的主要元素。植物体组织中的C:N:P 会影响其自身的生长发育,进而可能会对生态系统的 结构、功能及演变过程产生一定的影响^[24]。叶片是 森林生态系统的基本结构和功能单位,研究其C、N、 P化学计量特征对认识植物生长特性以及植物对环 境变化的适应与响应具有重要意义^[5]。

目前,对同一区域不同生活型树种叶片的生态化 学计量学已有一些研究,如 Sardans 等^[6]对加泰罗尼 亚森林植物的研究发现,常绿乔木叶片的 N、P 含量 显著低于落叶乔木,C:N和C:P显著高于落叶乔 木;刘微^[7]对浙江天童山不同生活型树种的研究表 明,常绿树种叶片的 N、P 含量显著低于落叶树种, N:P显著高于落叶树种。然而,张希彪等^[8]对黄土 高原丘陵区油松和刺槐人工林的研究发现,油松叶片 N浓度低于刺槐,而 P 含量高于刺槐;王晶苑等^[9]对 中国 4 种优势树种的研究表明,常绿植物叶片的 N: P 高于落叶植物,而叶片 C:P 与森林类型的关系并 不十分密切,这种差异可能是由不同研究区域的环境 条件差异导致的。此外,植物对变化的环境具有自我 调节的适应策略,其生理代谢会随着生长季节的不同 发生变化,进而影响植物体内 C、N、P 化学计量特 征^[10],如 Orgeas 等^[11]研究发现,在栓皮栎叶片生长 初期,采样时间对叶其 C、N、P 等化学计量特征有显 著性影响;王国兴^[12]研究表明,落叶松的针叶在展叶 初期 N、P 含量较高,展叶后明显下降。因此,应对植 物 C、N、P 等化学计量特征的季节变化进行研究,以 揭示其在生长季内各阶段对环境变化的响应。

黄土丘陵沟壑区水土流失严重,生态环境脆弱, 是我国退化生态恢复与重建的重点区域。近年来,该 区种植了大面积的人工林,在水源涵养与水土保持等 方面表现出明显的效果,并且运用生态化学计量学方 法在其养分循环与限制方面取得了一些成果^[13-14]。 该区的原始森林几乎被破坏殆尽,然而,在黄土高原 中部的子午岭林区还存在少数的油松和辽东栎天然 次生林,二者分别作为该区森林群落自然演替过程中 的亚顶极群落与顶级群落,对于森林结构与物种组成 以及调节区域气候、水土保持以及维持生态平衡等具 有重要作用,但在生态化学计量学方面报道较少。研 究其生态化学计量学特征的季节变化,有助于了解该 区优势种植物在生长季内各阶段对环境变化的响应, 进一步指导森林管理,并拓宽黄土丘陵沟壑区森林生 态系统生态化学计量学的研究。

本文以子午岭林区油松、辽东栎天然次生林为研 究对象,对其生长季内不同月份叶片 C、N、P 含量及 其计量比进行了分析,旨在明确研究区内不同天然林 树种叶片 C、N、P 含量及其计量比的季节变化规律, 以期为黄土丘陵沟壑区生态恢复提供依据,同时为丰 富黄土高原地区乃至更大尺度的生态化学计量学研 究提供基础。

1 材料与方法

1.1 研究区概况

研究区位于陕西省子午岭林区的桥山林场,属中 温带大陆性气候,年平均气温9.4°C,极端最高温和 最低温分别为21.7°C和-4.5°C。该区年平均降水 量为 596.3 mm,5—10 月的降水量占全年降水量的 84%,7,8 月多暴雨,其降水量占全年降水量的 42%。 年平均日照时数为 2 528.4 h,年平均无霜期为 172 d。油松林下灌木主要为胡秃子(Elaeagnus pungens),草本主要为披针苔草(Carex lanceolata);辽 东栎林下灌木主要为黄刺玫(Rosa xanthina),草本 主要为披针苔草(Carex lanceolata)。

1.2 样地布设

在研究区内选取植被分布均匀,区域代表性较强的中龄油松(31~38年)和辽东栎(45~50年)天然次 生林为样地。两个树种分别设置3个重复样地,每个 样地设定一个大小为20m×20m的样方,记录所在 地形、地貌等因子。样地基本概况如表1所示。

表1 样地基本概况

样地		 好	生産	海拔/m		披向/(°)	亚坎胸衫/cm	亚均树宫/m	
小十地		红皮	印度	码 100 / 111	极皮(()	观问/()	玛胸住/011	玛州间/III	
	1	109°00.53′	35°42.65′	1054.20	18	105	15.31 ± 3.29	12.82 ± 1.39	
油松	2	109°00.52′	35°42.64′	1050.30	18	125	14.12 ± 3.18	12.44 ± 1.71	
	3	109°00.52′	35°42.62′	1048.80	20	100	15.89 ± 4.44	12.85 \pm 1.70	
	1	108°59.79′	35°43.94′	1208.20	24	157	10.80 \pm 7.43	7.58 \pm 1.47	
辽东栎	2	108°59.99′	35°43.94′	1206.03	24	155	16.73 ± 6.07	6.35 \pm 1.92	
	3	108°59.80′	35°43.96′	1206.20	32	135	16.87 \pm 4.83	7.48 \pm 2.17	

1.3 样品采集

对选定的固定样方内林木进行每木检尺,记录其 种名、测量其树高和胸径等,选择若干棵接近平均树 高和平均胸径的树木作为标准木。于 2014 年的 4, 6,8,10 月的中旬分别采样,采样时,在每个样地内随 机选取 5 棵标准木,每一棵树的树冠南向分上、中、下 3 个冠层随机获取 3 个树枝,取足够质量的健康叶片 混合均匀作为样品存于纸袋。

1.4 样品处理与测定

将植物叶片样品置于 85 ℃烘干至恒重,粉碎后 过 100 目筛,密封以测 C、N、P。样品 C、N、P 含量分 别用重铬酸钾硫酸氧化法、凯氏定氮法和钼锑抗比色 法测定。

1.5 数据处理

用 SAS 9.2 进行数据的统计分析,其中,两树种间 叶片 C、N、P 含量及其计量比的差异性检验用单因素方 差分析(One-Way ANOVA)进行,显著性差异水平设置 为 P=0.05,并用 SNK 法进行多重比较;不同物种及不 同月份对两物种叶片 C、N、P 含量及其计量比的影响分 析用 Repeated 语句进行。用 SigmaPlot 10.0 作图。

2 结果与分析

2.1 油松、辽东栎叶片 C、N、P 含量及其计量比与变 异系数

两树种叶片 C、N、P 含量及其计量比在整个生长 季内的变异特征不同(表 2)。油松叶片 C、N、P 含量 均值分别为 48.06%,1.15%,0.11%,变异系数分别 为4.38%,14.01%,31.62%。辽东栎叶片C、N、P 含量均值分别为43.16%,2.10%,0.19%,变异系数 分别为1.11%,50.24%,100.51%。油松叶片C含 量显著高于辽东栎(P<0.05),N含量显著低于辽东栎 (P<0.05),P含量差异不显著;油松叶片C含量变异系 数高于辽东栎,N、P含量变异系数低于辽东栎。

表 2 油松、辽东栎叶片 C、N、P 含量及其计量比和变异系数

参数	物种	均值	极差	最大值	最小值	变异系数/%
C/ %	油松	48.06±1.21a	4.11	50.34	46.23	4.38
	辽东栎	$43.16 \pm 0.28 \mathrm{b}$	1.04	43.78	42.74	1.11
NT/0/	油松	$1.15 \pm 0.093 b$	0.38	1.34	0.96	14.01
N/ %	辽东栎	2.10±0.66a	2.69	3.70	1.01	50.24
$P/\sqrt[p]{0}$	油松	0.11±0.028a	0.08	0.16	0.08	31.62
	辽东栎	0.19±0.11a	0.39	0.47	0.08	100.51
C:N	油松	42.58±2.89a	10.87	48.50	37.63	11.75
	辽东栎	$25.47 \pm 7.52 \mathrm{b}$	31.14	42.91	11.77	51.14
C · D	油松	473.22±71.81a	270.15	588.68	318.53	26.28
C : P	辽东栎	380.18±118.26a	151.48	573.00	318.53 26.28 421.52 53.88	
N. D	油松	$11.02 \pm 1.07 \mathrm{b}$	3.95	12.42	8.47	16.80
N : b	辽东栎	14.49±3.02a	12.42	20.36	7.94	36.12

注:表中数字后不同小写字母表示树种间差异性显著(P<0.05)。

油松叶片 C:N、C:P和N:P均值分别为 42.58, 473.22和11.02,变异系数分别为 11.75%,26.28%和 16.80%;辽东栎叶片 C:N、C:P、N:P分别为 25.47, 380.18和14.49,变异系数分别为 51.14%,53.88%和 36.12%。油松叶片 C:N 显著高于辽东栎(P< 0.05),N:P显著低于辽东栎(P<0.05),C:P差异 不显著,各指标变异系数均为油松低于辽东栎。两树 种各指标总体上表现为 C 含量变异系数最小,P 含量 变异系数最大。

322

2.2 不同季节油松、辽东栎叶片 C、N、P 含量及其计量比的动态变化

两树种叶片 C、N、P 含量及其计量比的动态变化 不一致(图 1),油松叶片 C 含量在 4—6 月显著下降 (P < 0.05),随后保持稳定,8 月之后显著上升(P < 0.05),至 10 月基本与4 月持平;而辽东栎叶片 C 含 量基本保持不变。油松叶片 N 含量在 4—6 月保持 稳定状态,6—8 月显著下降(P < 0.05),随后显著上 升(P < 0.05),至 10 月基本与6 月持平;而辽东栎叶片 N 含量在生长季内呈逐渐下降的趋势,具体表现为4—6 月显著下降(P < 0.05),前后保持稳定,8 月后再次显著 下降(P < 0.05),并在 10 月达到最低值。油松叶片 P 含 量在 8 月前保持稳定状态,8 月后呈显著上升(P < 0.05) 趋势,并在 10 月达到最高值;辽东栎叶片 P 含量在4 月 最高,4—6 月显著下降(P < 0.05),之后趋于稳定。

54 60 油松 52 ABa Aa 50 Aa Aa Aa 辽东栎 Ba 50 40 %⁴⁸ ³46 Z ... 30 Вb Ва Ba Bb ₹ Aa Вb AЪ 20 Ab -₹ ð 油松 44 Ab Cb 잔 辽东栎 10 42 40 0 10 4 6 8 4 6 8 10 月份 月份 5 750 Aa Aa Aa Aa 油松 600 4 ह 辽东栎 T Aa Aa 450 3 بر ⁴⁵⁰ ن ن 300 N/% ক Ba Ba ABa 2 Ba Aa 油松 АВЪ всь Cb 辽东栎 ∽œ Cb 150 1 Bb 0 0 10 4 6 8 4 6 8 10 月份 月份 0.6 24 Ая Aa 0.5 油松 20 辽东栎 Ba 0.4 주 <u>م</u> 16 Ca \$ 0.3 Aa Aa ত z ₁₂ Bb -0.2 Aa Ba Ва Db, Ba Bb 油松 Bb 8 0.1 Ŷ 辽东栎 Ba Ba 0 4 4 8 10 4 8 6 6 10 月份 月份

油松叶片C:N在6月前变化不显著,6月后显

著上升(P < 0.05),并在 8 月达到最高值后显著下降 (P < 0.05),直至 10 月基本与 6 月持平;辽东栎叶片 C:N在4—6 月显著上升(P < 0.05),6—8 月保持 平稳状态,8 月后呈显著上升(P < 0.05)的趋势,并 在 10 月达到最高值。油松叶片 C:P在 8 月前较稳 定,8 月后显著下降(P < 0.05),并在 10 月达到了最 低值;辽东栎叶片 C:P在4—6 月呈显著上升趋势 (P < 0.05),之后变化不明显。油松叶片 N:P呈先 下降后上升最后下降的趋势,相邻两个采样时间之间 差异性显著(P < 0.05);辽东栎叶片 N:P在4 月最低, 先显著上升(P < 0.05),至 6 月达到最高值后显著下降 (P < 0.05)。

叶片 C:N 在生长季内各月份均有显著性种间 差异(P<0.05),叶片 C:P 在 4 月以及 N:P 在 4 月和 6 月均有显著性种间差异(P<0.05)。另外,叶 片 C:N 和 C:P 在生长季内的变化趋势分别与其 N、P 含量的变化相反。

注:图中不同大写字母表示月份间差异性显著(P<0.05);不同小写字母表示树种间差异性显著(P<0.05);误差线表示标准误差(n=3)。 图 1 油松、辽东栎叶片C、N、P含量及其计量比的季节动态

2.3 油松、辽东栎叶片 C、N、P 含量及其计量比的变 响最

异来源分析

由表 3 可以看出,两树种叶片 C 含量受树种影

响最大,达到极显著水平(P<0.01),树种与月份交 互作用对其的影响次之,月份的影响最小。叶片 N、 P含量、C:P和 N:P均受树种的影响最小,月份的

影响次之,二者交互作用的影响最大,且树种对 C:P 的影响不显著,对 N:P 的影响显著(P<0.05),其 余均达到极显著水平(P<0.01)。 叶片 C:N 受树种的影响最大,树种与月份交 互作用次之,月份的影响最小,均达到极显著水平 (P<0.01)。

表 3 油松、辽东栎叶 C、N、P 含量及其计量比整体变异来源分析

亦日本近	自由度	С		Ν		Р	
受开术师	df	离差平方和 SS	F	离差平方和 SS	F	离差平方和 SS	F
树种(S)	1	144.45	127.44**	5.05	130.45**	0.04	26.19**
月 份(M)	3	16.95	3.94*	5.46	65.38**	0.14	71.24 * *
树种×月份(S×M)	3	24.97	5.81*	6.65	79.52**	0.19	98.60**
亦日本近	自由度	C : N		С:Р		N : P	
受开术师	df	离差平方和 SS	F	离差平方和 SS	F	离差平方和 SS	F
树种(S)	1	1756.06	96.83**	51938.03	7.03	72.07	19.52*
月 份(M)	3	571.12	17.43**	102455.04	7.84**	124.60	47.19**
树种×目份(S×M)	3	1180.99	36 04**	414358.78	31 72**	152.68	57 83**

注:*表示 P<0.05;**表示 P<0.01。

3 讨论

3.1 油松、辽东栎叶片 C、N、P 化学计量特征

本研究中两树种叶片 C 含量低于陕西省[15]油松 (51.49%)和辽东栎叶片(44.83%),N、P含量和C: N分别高于陕西省油松(1.06%,0.10%和49.96)和 辽东栎叶片(1.72%,0.13%和26.21),表明本研究 区的油松和辽东栎天然次生林叶片 N、P 含量及 N 利用效率较高。天然林和人工林会因自身遗传背 景的差异而具有不同的生态化学计量特征,本研究 中油松叶片 C 含量低于姜沛沛等[16] 对子午岭林区油 松人工林的研究(52.62%),N、P含量高于该研究 (1.06%,0.09%)。然而,邓娟等^[17]对该区油松人工 林与天然林的研究表明,油松天然林叶片C含量高 于人工林,叶片 N、P 含量低于人工林,与本研究不一 致,原因可能是本研究为生长季内多次采样的平均结 果,而上述研究均为一次性采样(7月),不具有代表 性。在小区域尺度上,叶片 C、N、P 含量变异较大,如与 王宁等[18] 对山西油松天然林的研究(中龄油松天然林叶 片C、N、P含量分别为43.16%,2.10%,0.19%)相比,本 研究中叶片C含量较高, 而N、P含量较低。辽东栎 叶片 N 含量低于李颖等^[19]对东灵山地区辽东栎天然 次生林的研究结果,而P含量高于该研究(N、P含量 分别为 2.33%~2.54%,0.13%)。

另外,本研究的油松叶片 C 含量均值显著高于辽东 栎,说明油松具有较高的比叶重,光合速率低,生长慢, 对不利环境的适应能力强^[2,20]。辽东栎叶片 N 含量均 值显著高于油松,原因可能是常绿植物的 N 重吸收率低 于落叶植物^[21],使叶片 N 含量降低,也意味着辽东栎叶 片光合速率较高,对养分的竞争力较强^[20]。研究结果与 部分已有研究中常绿植物的叶片 C 含量高于落叶植物, N 含量低于落叶植物,针叶植物 C 含量高于阔叶植 物,N 含量低于阔叶植物的结论一致。

各元素的变异系数大小与牛得草等^[22]的研究结果一致,即叶片C含量变异系数最小,N含量次之,P

含量变异系数最大,表明两天然林树种在不同生长阶 段叶片 C 含量比较稳定;而植物生长的限制性元素 N和 P,随着植物生长环境与生长阶段的变化,存在 较大变异性,即一次性采样并不能代表植物的生态化 学计量特征,尤其是 P 元素。另外,除叶片 C 含量 外,油松叶片各元素含量及其计量比的变异系数均大 于辽东栎,可能由于油松的生理代谢强度全年变化较 小,对环境变化的适应性较强。

3.2 不同季节油松、辽东栎叶片 C、N、P 含量及其计量比的动态变化

植物叶片 C、N、P 含量及其计量比的动态变化与 其生长节律密切相关[21]。油松叶片在5月前生长迅 速,花期多在5月,5月下旬或6月上旬叶片停止生 长,其叶片C含量在4-6月显著降低(图1A),可能 是4月叶片快速生长需要大量的C来提供能量,积 累了较多的 C, 而随着花期的到来, 叶片中的 C 会转 移以供花器官发育;8-10月,油松叶片C含量显著 上升,原因可能是此阶段油松老叶脱落,一年生叶片 占优势,固定的C较多^[23];而辽东栎叶片C含量在整 个生长季内较稳定。油松叶片 N 含量在 6 月到 8 月 显著下降(图 1B),原因可能是 6 月叶片成熟,养分浓 度达到峰值,茎的养分浓度相对恒定,随后叶和茎都 转变为养分库,为花和果的发育提供养分^[24],使叶片 养分含量降低;到10月,随着油松多年生叶片脱落, 当年生成熟叶片和一年生叶片占优势,其蛋白质合成 能力高^[23],叶片 N 含量升高。辽东栎叶片 N 含量在 4月到6月显著下降,原因可能是5月中下旬花形成 后,更多的养分要供给果实的形成;叶片凋落前,辽东 栎要为下一年生长储存能量而进行养分重吸收,因此 8-10月N含量显著下降^[25]。油松叶片P含量在8 月前较稳定(图 1C),在 8-10 月显著上升,并在 10 月达到最高值,原因可能是此阶段植物叶片蛋白质的 合成能力高^[23],需要投入更多的 rRNA,而 rRNA 是 植物的一个主要磷库;辽东栎叶片 P 含量在 4-6 月

显著下降,原因可能是 4 月份辽东栎叶片生长速率 高,需要较多的蛋白质与核酸(含 P 量高)满足植物 生长的需求,但 P 浓度会随着展叶而稀释^[22]降低, 6—10 月叶片 P 含量变化不显著,可能与叶片的 P 重 吸收率较低^[26]有关。两树种间叶片 N 含量在生长季 内各月份均有显著性差异,说明不同物种对 N 吸收 利用的特异性较明显。

植物叶片C:N和C:P代表了单位养分能产 生的生物量,即植物对养分的利用效率和固碳效率, 而 N: P 代表植物养分限制状况, 尤其是当地的土壤 养分^[27]。本研究中,油松叶片C:N和C:P在8-10月显著下降(图1D、图1E),表明在生长末期,油松 对N、P养分的利用效率会降低;辽东栎叶片C:N和 C:P在4-6月显著上升,表明其在生长旺盛期对养分 利用效率升高。两种植物叶片的C:N和C:P的变 化趋势与 N、P 变化趋势完全相反,这与柯立等^[28]对 北亚热带 3 种阔叶乔木叶片的研究结果一致。植物 叶片 C 的含量远高于 N、P,而且变异较小,不会成为 限制植物生长的因子,因此,植物叶C:N、C:P可 能主要由叶片 N、P 含量决定。本研究中油松叶片 N:P在4次采样中均小于14(图1F),生长受N限 制^[3],意味着尽管季节对叶片 N:P影响显著,但影 响研究区油松生长的限制性元素未随生长季节变化 而改变。而辽东栎叶片 N:P在4月和10月小于 14,生长受N限制,在6月和8月份大于16,受P限 制,可能是由于 6-8 月该地区降雨量的增加导致土 壤淋溶,进而引起土壤P养分的损失。

3.3 油松、辽东栎叶片 C、N、P 含量及其计量比的变 异来源分析

油松和辽东栎叶片C、N、P元素含量及其计量比受 树种本身和环境因子的影响不同(表 3)。叶片 C 含量和 C:N的变异主要来源于树种,体现了植物种系分化过 程中物种对元素吸收利用的特异性,其次是树种与月份 的交互作用,最后是月份。而叶片 N、P 含量和 C:P、N :P受树种与月份的交互作用影响最大,受月份的影响 次之,树种对其影响最小。He等^[29]研究表明,在北方草 地 171 个植物种叶片 N、P 含量的变异来源中,物种能够 解释总变异的 27%,环境因子能够解释总变异的 29%, 而交互作用引起的变异最大,达到 38%,与本研究结果 基本一致。月份对植物元素化学计量特征的影响来源 于两方面,一方面是植物生长发育过程中自身功能代谢 的变化;另一方是各月份的温度、降水对叶片化学性 质的影响,如 Sardans 等^[6]研究表明,温度、降水、人 类活动、土壤以及水分都是影响植物体内 N、P 化学 计量特征的因子,生长季是诸多环境因子的综合体 现,因此,对植物元素化学计量季节变化的研究还应 结合上述因子进一步研究。

4 结论

本文通过对子午岭林区油松和辽东栎天然次生 林叶片 C、N、P 化学计量特征的季节变化进行研究分 析,得出主要结论为:

(1)油松叶片 C 含量在 4 月和 10 月最高,N、P 含量均在 10 月最高,C:N和N:P在 4 月和 8 月 最高,C:P在 10 月最低。辽东栎叶片 C 含量在整 个生长季内变化不明显,N、P 含量均在 4 月最高,10 月最低,而C:N和C:P与之相反,均在 10 月最 高,4 月最低,N:P为 6 月最高,4 月最低。

(2)在整个生长季内,叶片 C 含量与 C:N 主要 受树种的影响,其他各指标主要受树种与月份交互作 用的影响。

(3)油松叶片的 C 含量显著高于辽东栎,N 含量和 C:N 显著低于辽东栎,P 含量和 C:P 差异不显著,意 味着油松对逆境的防御能力较高,但对 N 利用效率较 低;另外,油松叶片 N:P 小于 14,生长受 N 限制,而辽 东栎生长的限制性元素随生长季节变化而改变。

本研究有助于了解植物不同生长阶段的功能代 谢和对环境变化的适应策略,对植被恢复与重建有一 定意义。

参考文献:

- [1] 程滨,赵永军,张文广,等.生态化学计量学研究进展 [J].生态学报,2010,30(6):1628-1637.
- [2] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428 (6985):821-827.
- [3] Güsewell S. N: P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 2004, 164(2):243-266.
- [4] Manzoni S, Jackson R B, Troymow J A, et al. The global stoichiometry of litter nitrogen mineralization[J].
 Science, 2008, 321(5889):684-686.
- [5] 侯学煜.中国植被地理及优势植物化学成分[M].北京:科学出版社,1982.
- [6] Sardans J, Rivas-Ubach A, Penuelas J. Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain)[J]. Forest Ecology and Management, 2011, 262(11): 2024-2034.
- [7] 刘微. 天童主要落叶和常绿树种叶片 N、P 化学计量学 及分配特征研究[D]. 上海:华东师范大学,2014.
- [8] 张希彪,上官周平.黄土丘陵区主要林分生物量及营养 元素生物循环特征[J].生态学报,2005,25(3):527-537.
- [9] 王晶苑,王绍强,李纫兰,等.中国四种森林类型主要优 势植物的 C:N:P 化学计量学特征[J].植物生态学 报,2011,35(6):587-595.
- [10] Rivasubach A, Sardans J, Réreztrujiuo M, et al. Strong relationship between elemental stoichiometry and metabolome in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109

(11):4181-4186.

- [11] Orgeas J, Ourcival J, Bonin G. Seasonal and spatial patterns of foliar nutrients in cork oak (*Quercus suber* L.) growing on siliceous soils in Provence (France)
 [J]. Plant Ecology, 2002, 164(2):201-211.
- [12] 王国兴.不同林龄华北落叶松根茎叶中氮、磷含量季节动态变化研究[D].陕西杨凌:西北农林科技大学,2013.
- [13] 安娟娟. 黄土丘陵区典型人工植被土壤碳、氮、磷库动 态特征[D]. 陕西杨凌:西北农林科技大学,2014.
- [14] 李芳菲. 刺槐人工林 C、N、P 分配格局及其化学计量特 征研究[D]. 陕西杨凌:西北农林科技大学,2015.
- [15] 姜沛沛.陕西省森林生态系统乔灌草叶片与凋落物 C、 N、P 化学计量特征 [D].陕西杨凌:西北农林科技大 学,2016.
- [16] 姜沛沛,曹扬,陈云明,等.不同林龄油松(Pinustabulaeformis)人工林植物、凋落物与土壤C、N、P化学计 量特征[J].生态学报,2016,36(19):6188-6197.
- [17] 邓娟,上官周平.子午岭林区人工与天然油松林(Pinustabulae formis)养分库和碳库特征[J].生态学报, 2009,29(6):3231-3240.
- [18] 王宁,张有利,王百田,等.山西省油松林生态系统碳氮磷 化学计量特征[J].水土保持研究,2015,22(1):72-79.
- [19] 李颖,姚婧,杨松,等.东灵山主要树种在不同环境梯度 下的叶功能性状研究[J].北京林业大学学报,2014,36 (1):72-77.
- [20] Poorter L, Bongers F. Leaf traits are good predictiors of plant performance across 53 rain forest species[J]. Ecology,2006,87(7):1733-1743.
- [21] Aerts R, Iii F S. The mineral nutrition of wild plants

(上接第 295 页)

- [6] 柴仲平,梁智,王雪梅,等.不同灌溉方式对棉田土壤物理性 质的影响[J].新疆农业大学学报,2008,31(5):57-59.
- [7] 张利刚,曾凡江,袁娜,等.不同水分条件下疏叶骆驼刺 (Alhagisparifolia)生长及根系分株构型特征[J].中国 沙漠,2013,33(3):717-723.
- [8] 李文明,施坰林,韩辉生,等.节水灌溉制度对板蓝根耗水特征及产量的影响[J].灌溉排水学报,2007,26(6): 106-109.
- [9] 谭勇,梁宗锁,董娟娥,等.水分胁迫对菘蓝生长发育和 有效成分积累的影响[J].中国中药杂志,2008,33(1): 19-22.
- [10] 国家药典委员会.中华人民共和国药典(一部)[S].北 京:中国医药科技出版社,2010:20-21.
- [11] 孟兆江,卞新民,刘安能,等.调亏灌溉对夏玉米光合生理 特性的影响[J].水土保持学报,2006,20(3):182-186.
- [12] 裴冬,孙振山,陈四龙,等.水分调亏对冬小麦生理生态 的影响[J].农业工程学报,2006,22(8):68-72.
- [13] 罗永忠,成自勇.水分胁迫对紫花苜蓿叶水势、蒸腾速率和

revisited: A re-evaluation of processes and patterns [J]. Advances in Ecological Research,1999,30:1-67.

- [22] 牛得草,李茜,江世高,等. 阿拉善荒漠区 6 种主要灌木 植物叶片 C:N:P 化学计量比的季节变化[J]. 植物 生态学报,2013,37(4):317-325.
- [23] 衣宁,赵文倩,刘倩,等.油松新生叶与老叶光合功能的 比较[J].林业科技,2014,39(6):10-14.
- [24] Oliveira G, Martins-Loucão M A, Correia O, et al. Nutrient dynamics in crown tissues of corkoak(Quercus suber L.)[J]. Trees, 1996, 10(4): 247-254.
- [25] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation ofprimary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12):1135-1142.
- [26] Chapin F S III, Kedrowski R A. Seasonal changes in nitrogen and phosphorous fractions and autumn retranslocation in evergreen and deciduous Taiga tree[J]. Ecology,2008,64(2):376-391.
- [27] Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment [J]. Biogeochemistry,2003,65(1):121-150.
- [28] 柯立,杨佳,余鑫,等.北亚热带常绿阔叶林三优势树种 叶水平碳氮磷化学计量及季节变化特征[J].土壤通 报,2014,45(5):1170-1174.
- [29] He J S, Wang X P, Schmid B, et al. Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes[J]. Journal of Plant Research, 2010, 123(4):551-561.

气孔导度的影响[J]. 草地学报,2011,19(2):216-221.

- [14] 崔秀妹,刘信宝,李志华.外源水杨酸对水分胁迫下扁 蓿豆光合作用及饲草产量和品质的影响[J].草地学 报,2013,21(1):127-134.
- [15] 高阳,黄玲,李新强,等.开花后水分胁迫对冬小麦旗叶 光合作用和保护酶活性的影响[J].水土保持学报, 2013,27(4):201-206.
- [16] 王海珍,韩路,徐雅丽,等. 土壤水分梯度对灰胡杨光合作 用与抗逆性的影响[J]. 生态学报,2017,37(2):432-442.
- [17] 黄学春.调亏灌溉对酿酒葡萄光合作用及果实生长发 育旳影响研究[D].银川:宁夏大学,2014.
- [18] 杜丽娜,张存莉,朱玮,等. 植物次生代谢合成途径及生物学意义[J]. 西北林学院学报,2005,20(3):150-155.
- [19] 段飞,杨建雄,周西坤,等.逆境胁迫对菘蓝幼苗靛玉红含 量的影响[J].干旱地区农业研究,2006,24(3):111-114.
- [20] 唐文文,张欣旸,何尤,等. 陇中半干旱地区大青叶采收 次数对药材产量品质的影响[J]. 中国中药杂志,2011, 36(8):955-958.