改良剂对旱地红壤微生物量碳、氮及可溶性有机碳、氮的影响

芮绍云1,袁颖红1,周际海1,刘贵军1,张文锋2,李丽1,黄欠如2,成艳红2

(1. 南昌工程学院,江西省退化生态系统修复与流域生态水文重点实验室,

南昌 330099;2. 江西省红壤研究所,江西 进贤 331717)

摘要:基于室内模拟培养试验,研究改良剂(生物质炭、过氧化钙)对旱地红壤微生物量碳、氮及可溶性有机 碳、氮的影响。试验设置 4 个处理,即 CK、Ca(过氧化钙,1.72 g/kg)、C(生物质炭,21.46 g/kg)、C+Ca。 结果表明:各处理土壤微生物量碳、氮以及可溶性有机碳具有相同的变化趋势,即前期(3 d 内)都增加较 快,在第3天达到最大值,随试验进行有所下降,配施效果优于单施。各处理可溶性有机氮在21d内缓慢 增加;第21天时,C+Ca,Ca,C 相比 CK 分别显著增加了62.1%,55.5%,40.9%;35 d以后,配施(C+Ca) 与单施过氧化钙(Ca)的效果显著优于单施生物质炭(C)和对照(CK)。120 d培养期内,配施(C+Ca)处理 能够明显提高微生物量碳、氮以及可溶性有机碳、氮的平均含量;微生物量碳的平均含量大小顺序为 C+ Ca>C>CK>Ca,微生物量氮的平均含量 C+Ca 处理显著高于其他处理;可溶性有机碳的平均含量大小 顺序为 C+Ca>Ca>C>CK,可溶性有机氮的平均含量 C+Ca、Ca 处理显著高于 CK、C 处理。微生物量 碳、氮以及可溶性有机碳之间互为极显著正相关(P < 0.01),而微生物量碳与可溶性有机氮之间呈极显著 负相关。因此,生物质炭和过氧化钙能有效提高旱地红壤微生物量碳、氮及可溶性有机碳、氮,且生物质炭 与过氧化钙配合施用更有助于土壤改良。

关键词: 改良剂; 旱地红壤; 微生物量碳; 微生物量氮; 可溶性有机碳; 可溶性有机氮

中图分类号:S156.2

文献标识码:A

文章编号:1009-2242(2017)05-0260-06

DOI: 10. 13870/j. cnki. stbcxb. 2017. 05. 040

Effects of Soil Amendments on Microbial Biomass Carbon, Nitrogen and Dissolved Organic Carbon and Nitrogen in Upland Red Soil

RUI Shaoyun¹, YUAN Yinghong¹, ZHOU Jihai¹, LIU Guijun¹,

ZHANG Wenfeng², LI Li¹, HUANG Qianru², CHENG Yanhong²

(1. Key Laboratory of Degraded Ecosystem Restoration and Watershed Ecological Hydrology, Jiangxi

Province, Nanchang Institute of Technology, Nanchang 330099;2. Jiangxi Institute of Red Soil, Jinxian, Jiangxi 331717) Abstract: Based on the indoor simulation experiment, the effects of amendment (biochar and calcium peroxide) on microbial biomass carbon, nitrogen and dissolved organic carbon and nitrogen in upland red soil were studied. The experiment included 4 treatments, namely CK, Ca (calcium peroxide, 1.72 g/kg), C (biochar , 21.46 g/kg), and C+Ca. The results showed that soil microbial biomass carbon, nitrogen and dissolved organic carbon had the same change tendency, which increased rapidly within 3 days, and reached the maximum on the third day, and then decreased with the time. Additionally, the effect of combined application of the two amendments was better than that of single application. The dissolved organic nitrogen increased slowly within 21 days; compared with CK, dissolved organic nitrogen under C+Ca, Ca, C treatments significantly increased by 62.1%, 55.5%, and 40.9% on twenty-first days, respectively; after 35 days, the effects of C+Ca and Ca was significantly better than those of C and CK. During the 120 days incubation period, C+Ca treatment could significantly improve the average content of microbial biomass carbon, nitrogen and dissolved organic carbon and nitrogen; the ranking of average content of microbial biomass carbon from high to low was: C+Ca>C>CK>Ca, and the average content of microbial biomass nitrogen in C+Ca treat-

收稿日期:2017-04-28

资助项目:江西省教育厅科研技术研究项目(GJJ161100);国家自然科学基金项目(41461050,31760167,41661065);南昌工程学院 2016 年度 大学生科研训练计划;南昌工程学院第十五届"挑战杯"大学生课外学术科技作品竞赛

第一作者: 芮绍云(1992—), 女, 安徽六安人, 硕士研究生, 主要从事水土保持方面研究。 E-mail: 945446008@qq. com 通信作者:袁颖红(1974一),男,博士,副教授,主要从事水土保持和土壤生态学研究。E-mail:yhyuan@nit.edu.cn

ment was significantly higher than those of other treatments. the ranking of average content of soluble organic carbon was C+Ca>C>CK, and they were significantly higher in C+Ca and Ca than those of CK and Ca. There was a significant positive correlation between microbial biomass carbon, nitrogen and dissolved organic carbon (P<0.01), but there was a significant negative correlation between microbial biomass carbon and dissolved organic nitrogen. Therefore, biochar and calcium peroxide can effectively improve soil microbial biomass carbon, nitrogen and dissolved carbon and nitrogen in upland red soil, and the combination of biochar and calcium peroxide is more beneficial to soil improvement.

Keywords: soil amendments; upland red soil; microbial biomass carbon; microbial biomass nitrogen; dissolved organic carbon; dissolved organic nitrogen

红壤在中国主要分布于长江以南的低山丘陵区, 是我国重要的土壤资源,红壤丘陵区是我国重要的农产品生产基地,具有巨大的农业生产潜力。然而红壤地区长期受亚热带季风气候的影响,导致红壤养分缺乏,土壤肥力下降,不利于作物高产,且旱地红壤养分退化程度相对于水田土壤更严重[1]。改良旱地红壤的方法有多种,如合理轮作、深耕细作与少耕免耕相结合、秸秆还田以及覆盖等措施[2],而应用生物质炭等土壤改良剂是快速改善土壤环境、修复退化红壤的重要措施之一[3]。

土壤碳氮循环对农业生态系统有重要的意义,其 含量是评价土壤肥力的重要指标[4]。土壤微生物量 碳、氮和可溶性有机碳、氮是土壤碳、氮库中最活跃的 组分[5]。谢国雄等[6]通过室内模拟培养试验研究添 加生物质炭对红壤氮素供应能力的影响,结果表明, 添加生物质炭处理能明显增加微生物生物量碳和氮 的含量。韩光明等[7]研究也表明生物质炭能够明显 提高土壤微生物量,认为适量的生物质炭对促进氮代 谢微生物的活性可能具有一定作用。但 Khodadad 等[8]也发现低温或高温下热解形成的生物炭会使土 壤微生物多样性降低。土壤 pH 对土壤微生物具有 很大的影响,真菌喜好酸性土壤,细菌则偏好中性土 壤,而施用生物质炭和过氧化钙等改良剂能提高土壤 pH,进而对土壤微生物产生影响^[9]。土壤和自然水 体中均含有可溶性有机物,由于其水溶性特点,常被 认为是陆地和水生生态系统中非常活跃和重要的组 分之一[10]。研究表明,有10%~40%的可溶性有机 物能够被微生物直接吸收利用,所以土壤可溶性有机 碳、氮能够为微生物的生长、繁衍提供能源[11-12]。土 壤微生物量碳、氮与可溶性有机碳、氮相辅相成,相互 促进,土壤微生物量是可溶性有机物潜在的重要来 源[13],生物质炭和过氧化钙的施入能够通过影响微 生物数量和活性进而影响可溶性有机碳、氮的含量, 微生物量与可溶性有机物的产生与降解关系密切,值 得更进一步的研究[14]。本文以农田定位研究为基 础,采用室内恒温培养的方法,针对旱地红壤,探讨生

物质炭、过氧化钙等改良剂对土壤微生物量碳、氮及可溶性有机碳、氮的影响,揭示改良剂施用后土壤微生物量碳、氮和可溶性有机碳、氮含量的动态变化规律,对指导南方旱地红壤合理施用改良剂和温室气体减排具有一定的意义。

1 材料与方法

1.1 试验土样

试验土样采自江西省进贤县红壤研究所定位试验基地内,该地属于典型的低丘红壤区旱地,海拔25~30 m,坡度为5°,土壤为第四纪红色黏土发育而成。地理位置为东经116°20′24″,北纬28°15′30″,属亚热带季风湿润气候,雨量充沛,四季分明,日照充足,月日照时数平均285 h。

选择农田定位试验中红薯收获后未施用改良剂的表层 0—20 cm 新鲜土壤作为培养土。试验于 2016 年 10 月 12 日田间取土样,并将在田间采集的土壤过 2 mm标准筛,储存于 4 ℃冰箱中,备用。该土样的总有机碳含量 12.6 g/kg,全氮含量 4.4 g/kg。本试验结束时对照CK的全氮、全碳含量分别为 2.77,9.39 g/kg;Ca 处理的全氮、全碳含量分别为 2.67,9.36 g/kg;C 处理的全氮、全碳含量分别为 2.73,18.31 g/kg;C+Ca 处理的全氮、全碳含量分别为 3.22,19.64 g/kg。

1.2 试验设计

培养试验从2016年10月20日开始至2017年2月17日结束,为期120d,称取130g新鲜土样放于培养瓶中,添加不同剂量的生物质炭(C)和过氧化钙(Ca),调整土壤含水量至25%,将土样和改良剂混合后放置于25℃培养箱进行培养。本试验共设4个处理,每个处理3次重复。培养试验处理及生物质炭、过氧化钙用量如表1。

 表1 试验处理
 单位:g/kg

 处理
 生物质炭
 过氧化钙

 CK
 0
 0

 Ca
 0
 1.72

 C
 21.46
 0

 C+Ca
 21.46
 1.72

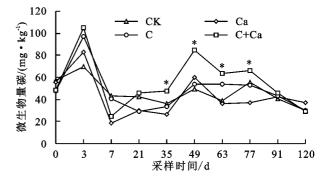
1.3 样品采集和分析方法

本试验于 2016 年 10 月中旬开始培养,分别在第 0,3,7,21,35,49,63,77,91,120 天进行破坏性采集 土壤样品,密封土样于 4 \mathbb{C} 冰箱中保存。

微生物量碳、氮采用氯仿熏蒸法测定。土样经氯仿熏蒸和未熏蒸 2 种不同处理后,微生物量碳用 K_2SO_4 溶液浸提,TOC 仪测定。浸提液中土壤可溶性全氮采用碱性过硫酸钾氧化法测定。熏蒸与未熏蒸土样的全碳、氮的差值除以转换系数,计算得到微生物量碳、氮,微生物量碳、氮的转换系数为 0.45。土壤可溶性有机碳采用纯净水提取鲜土可溶性有机碳,水土质量比 $5:1,200\ r/min$ 振荡 2h 后,在 4 C 条件下以 $4000\ r/min$ 离心 $20\ min$,将上清液过 0.45 μm 滤膜后得到土壤可溶性有机碳样品,可溶性有机碳含量采用 TOC 分析仪测定;土壤可溶性有机氮是可溶性全氮和无机氮的差值。

1.4 数据分析

本文所有的数据分析和制图都在 Microsoft Excel 2013 以及 SPSS 19.0 统计软件中完成,图中的数据均用平均值表示,采用 SPSS 进行显著性分析,显著性水平为 α =0.05。


2 结果与分析

2.1 不同处理土壤微生物量碳、氮的动态变化

由图 1 可知,各处理在前 3 d内,土壤微生物量碳逐渐增加,至第 3 天达到最大值;CK、Ca、C 从第 3 天后逐渐减小,至 63 d后呈基本稳定状态,而 C+Ca 处理第 7 天达到最小值,然后缓慢增加至第 49 天出现第 2 峰值;各处理至培养结束时含量趋于一致。土壤施入改良剂后第 3 天,Ca、C、C+Ca 处理与对照 CK 相比,微生物量碳的含量显著增加,各处理微生物量碳大小顺序为 C+Ca>C>Ca>CK。第 7 天以后,单施生物质炭(C)和过氧化钙(Ca)随着培养试验的进行,微生物量碳含量在对照(CK)的上下波动且变化幅度不大,而配施(C+Ca)微生物量碳的含量缓慢增加,在第 49 天时与 CK 相比显著增加了 41.3%;35~77 d内,C+Ca 显著高于其他处理。120 d培养期内,微生物量碳的平均含量大小顺序为 C+Ca>C>CK>Ca、C+Ca 处理显著高于其他处理。

由图 2 可知,各处理土壤微生物量氮逐渐增加,第 3 天达到最大值,3 d 后逐渐减小,21 d 后 CK、Ca、C 处理 又开始缓慢增加,至 63 d 后缓慢减小,而 C+Ca 由 21 d 缓慢增加至 49 d 达到第 2 峰值;培养结束时,各处理均低于初始值。在第 3 天时,C+Ca、C 处理微生物量氮分别显著高于 CK 处理 22.7%和 20.3%,C+Ca 处理在 3~49 d 内,微生物量氮含量显著高于其他处理,在第 49

天时配施处理达到最大值 13.42 mg/kg,相比 CK 显著增加了 39.6%。在 120 d 内,C+Ca 处理微生物量氮的平均含量显著高于 C、CK 和 Ca。

注:*表示差异显著(P<0.05)。下同。

图 1 改良剂作用下土壤微生物量碳的动态变化

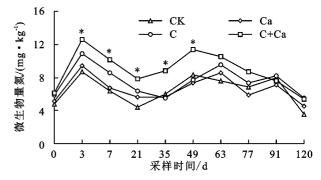


图 2 改良剂作用下土壤微生物量氮的动态变化

2.2 不同处理土壤可溶性有机碳、氮的动态变化

由图 3 可知,120 d内,各处理的变化趋势基本相同,可溶性有机碳的含量均是 3 d内迅速增加并达到最大值,3 d后逐渐下降,至第 7 天达到最小值,7 d后又开始缓慢增加,第 49 天开始减少,63 d后基本稳定,培养结束后,各处理趋于一致。第 3 天时,C+Ca、Ca与对照 CK 相比分别显著增加了 25.8%、23.6%;35~49 d期间,C+Ca 相比其他处理显著增加;7 d后,单施生物质炭和过氧化钙对可溶性有机碳的影响不显著。可溶性有机碳的平均含量在培养期内的大小顺序为 C+Ca>Ca>C>CK,C+Ca 显著高于其他处理。

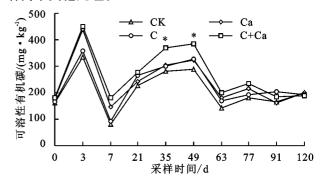


图 3 改良剂作用下土壤可溶性有机碳的动态变化

由图 4 可知,培养 21 d内,各处理可溶性有机氮含量缓慢增加,21 d后各处理逐渐减小,49 d后开始增加,

91 d 后趋于稳定。在第 21 d 时,可溶性有机氮的大小顺序为 C+Ca>Ca>C>CK,C+Ca、Ca、C 处理相比 CK 分别显著增加了 62.1%,55.5%,40.9%;35 d 以后,配施(C+Ca)与单施过氧化钙(Ca)的效果显著优于单施生物质炭(C)和对照(CK)。120 d 内,与 CK 和 C 相比,C+Ca、Ca 处理可溶性有机氮的平均含量显著增加。

2.3 微生物量碳、氮和可溶性有机碳、氮之间的关系

由图 5 可知,各处理土壤 MBC/MBN 的变化均以不规则的多峰波动曲线为主,各处理波动趋势也不尽相同。35 d以内,各处理的 MBC/MBN 值波动很大,而 35 d以后的变化相对比较平稳。统计分析表明,35~91 d内,各处理的土壤 MBC/MBN 值波动范围为 4~8。一周之内,各处理 DOC/DON 的变化比较明显,均是

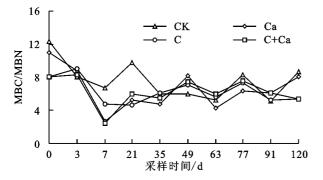


图 5 改良剂作用下微生物量碳、氮比(MBC/MBN)和可溶性有机碳、氮比(DOC/DON)的变化

通过分析施用过氧化钙和生物质炭处理下旱地 红壤微生物量碳、氮与可溶性有机碳、氮相关性,由表 2可知,微生物量碳与微生物量氮之间呈极显著正相 关(P<0.01),与可溶性有机碳之间有极显著正相关 关系,与可溶性有机氮之间呈极显著负相关;微生物 量氮与可溶性有机碳之间呈极显著正相关。

表 2 微生物量碳、氮与可溶性有机碳、氮之间的相关性分析

变量	微生物量碳	微生物量氮	可溶性有机碳	可溶性有机氮
微生物量碳	1	0.561 * *	0.591 * *	-0.359 * *
微生物量氮		1	0.383 * *	-0.054
可溶性有机碳			1	-0.106
可溶性有机氮				1

注: * 表示在 0.05 水平(双侧)上显著相关; * * 表示在 0.01 水平(双侧)上极显著相关。

3 讨论与结论

3.1 改良剂对旱地红壤微生物量碳、氮的影响

土壤微生物量的变化是表征土壤微生物对生物炭响应的重要指标之一[15]。生物炭施入土壤后,土壤各项理化性质发生了改变,尤其是土壤水分、肥力、pH等[16]。生物质炭由于自身特有的结构能够为微生物提供良好的栖息地和养分来源,进而改变土壤微生物生物量[17]。本研究结果表明,微生物量碳、氮在培养前期(3 d内)达到最大值,说明在温度和水分适宜的环境中,土壤微生物能迅速同化土壤中的有效养分,减少

先增大后减小,第 3 天出现最大值,CK 处理明显高于 Ca、C、C+Ca 处理。一周之后,各处理 DOC/DON 值缓慢增加,49 d后逐渐减小,63 d后 C 处理明显高于其他处理,而 CK、Ca、C+Ca 趋于平稳。

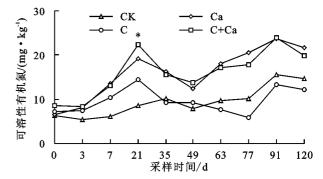
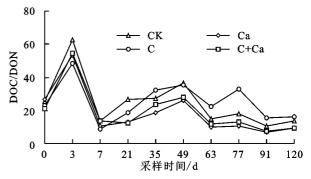



图 4 改良剂作用下土壤可溶性有机氮的动态变化

养分损失,并且能够激发土壤有机质的矿化[18]。

各处理土壤微生物量碳含量在培养试验开始一 周内变化明显,培养第3天微生物量碳迅速增加并达 到最大值,7 d以后,对照(CK)处理的土壤微牛物量 碳基本稳定,配施(C+Ca)处理比其他处理显著增 加,这一现象与匡崇婷等[19]对红壤有机碳矿化速率 在培育第2天达到最大值后迅速降低,培养7d后下 降缓慢并趋于平缓基本相吻合,说明生物质炭施入土 壤后,培养初期,易分解组分快速分解,释放大量养 分,土壤微生物代谢所需营养物质供应充足,所以微 生物迅速繁殖,但是土壤有机碳的矿化速率随着培养 时间的延长而降低,有机碳的矿化速率也处于相对稳 定的水平,可供微生物利用的营养源不断减少,最后 趋于稳定。而过氧化钙的施入,中和了酸性土壤的 pH,土壤微生物对土壤酸碱性的响应较为敏感,进而 影响土壤微生物数量和群落结构,且过氧化钙遇水能 够释放大量的氧气,为好氧微生物的繁殖和代谢提供 了良好的条件^[9]。35 d以后,生物质炭和过氧化钙 配施的效果显著优于单施,可能由于配施条件下,氧 气、水分和营养物质相对比较丰富,微生物的栖息条 件相对较好,所以微生物量碳相对较高[20]。

各处理土壤微生物量氮 3 d 内逐渐增加,第 3 天 达到最大值,可能原因是在培养初期,营养物质丰富,

微生物活跃。C、C+Ca处理在3d之内对微生物量 氮影响比较大,这是由于生物质炭施入土壤后给微生 物提供了大量的能源和养分,刺激了微生物的活动和 繁殖[21]。生物质炭的施用能够增加土壤微生物量 氮,与陈心想等[15]的研究结果一致。但3d之后,C +Ca 处理对土壤微生物量氮的影响明显优于 C 处 理,特别是在第 21~49 天(图 2),与 CK、C、Ca 处理 相比,C+Ca 处理土壤微生物量氮含量显著增加,而 C 处理与对照 CK 相比没有显著差异;在 120 d 内,C+Ca 处理微生物量氮的平均含量显著高于其他处理。C+ Ca 处理效果显著的原因可能是由于生物质炭的输 人,增强了土壤通气性和保水能力,而过氧化钙与水 反应能够释放大量氧气,再加上温度适宜,为微生物 的生长、繁殖提供了良好的生存环境,从而使得微生 物量氮的含量增加。但到了后期,培养系统中的营养 受到限制,营养物质逐渐被消耗减少,微生物活动变 得缓慢[20],所以至培养结束时,各处理趋于平稳并低 于初始值。

土壤 MBC/MBN 常用来反映微生物群落的结构特征[22]。许多研究表明,细菌的 C/N 值为 3~5,而真菌的 C/N 值为 4.5~15,土壤 MBC/MBN 高,说明真菌含量较高,MBC/MBN 值较低,则细菌占优势[23-24]。一般认为土壤微生物组成的不同是导致土壤 MBC/MBN 变化的缘由。本研究中,MBC/MBN值在 35 d 内波动较大,35 d 以后各处理 MBC/MBN值4~8,说明真菌占优势。各处理的 MBC/MBN大小不一,说明土壤微生物群落受 pH 等其他因素的影响较大,但改良剂的单施及配施可以通过改变微生物的群落来改善土壤结构,进而提高土壤肥力。张娟等[25]的盆栽试验结果表明,土壤微生物量碳、氮具有相同的变化趋势,由表 2 可知,微生物量碳与微生物量氮之间呈极显著正相关(P<0.01),说明微生物量碳与氮之间有密切关系。

3.2 改良剂对旱地红壤可溶性有机碳、氮的影响

土壤可溶性有机碳、氮是土壤有机碳、氮中最活跃的组分之一,在保持土壤肥力维持土壤碳、氮库平衡方面具有重要的意义[26]。本研究结果表明,整个试验期间,配施(C+Ca)处理对可溶性有机碳、氮的影响显著,能够明显提高可溶性有机碳、氮的平均含量。

Ca、C、C+Ca 处理可溶性有机碳与对照 CK 的变化趋势基本相同,各处理均是 3 d 内迅速增加并达到最大值,35~49 d 期间,C+Ca 处理相比其他处理显著增加(图 3)。Laird 等[27]指出,在培养初期,生物质炭可释放出各种有机分子,直接增加了土壤中可溶

性有机碳的含量。另外,生物质炭和过氧化钙的输入,提高了土壤 pH,增加了活性有机碳的亲水性和电荷密度,有助于固相有机碳溶解,从而增加了土壤可溶性有机碳的含量^[28-29]。本研究中微生物量碳与可溶性有机碳之间有极显著正相关关系,土壤微生物量碳与可溶性有机碳之间关系密切,闫浩^[30]发现土壤微生物量碳的变化总是伴随着土壤中可溶性有机碳的变化而变化。

本研究表明,生物质炭和过氧化钙的单施和配施 在一定程度上能增加可溶性有机氮的含量。培养进 行第21天时,C+Ca、Ca、C处理相比CK分别显著增加 了 62.1%,55.5%,40.9%,可能是因为可溶性有机氮自 身可作为直接营养物质被微生物吸收利用[31],本试验中 微生物量碳与可溶性有机氮之间呈极显著负相关,并且 在第21天时,各处理微生物的数量明显减少,微生物对 可溶性有机氮的吸收利用自然减少,从而使可溶性有 机氮积累增加。35 d以后,配施(C+Ca)与单施过氧 化钙(Ca)的效果显著优于单施生物质炭(C)和对照 (CK)。可能的原因是生物质炭和过氧化钙的配施为 微生物提供氧气和丰富的营养物质,激发了土壤微生 物的繁殖,微生物分解土壤有机物时释放了一定数量 的可溶性有机物[32],从而能够提高土壤中可溶性有 机氮的含量。也可能是因为过氧化钙的施入,释放大 量的氧气,导致厌氧的微生物数量减少,对可溶性有 机氮的吸收利用减少,从而使可溶性有机氮积累增 加;而生物质炭具有较强的吸附性,可溶性有机氮容 易被土壤中胶体吸附[33],所以单施生物质炭会降低 土壤中可溶性有机氮含量。

研究 DOC/DON 变化有利于深入了解土壤中可溶性有机碳、氮的来源和转化,对于旱地红壤中有机养分含量的调节有很大意义。适当提高 C/N,可以一定程度上增加微生物代谢活动,从而增加土壤中溶解性有机氮含量^[33]。本试验一周之内,DOC/DON的波动很大,63 d后 CK、Ca、C+Ca 处理 DOC/DON 值比较平稳,说明随培养时间的加长,微生物消耗土壤中有机物同时也会分解土壤中的有机物使可溶性有机碳、氮增加,二者达到动态平衡,从而 DOC/DON 变化不大^[34]。

参考文献:

- [1] 赵其国. 我国红壤的退化问题[J]. 土壤,1995,27(6): 281-285.
- [2] 赵记军,徐培智,解开治,等.土壤改良剂研究现状及其在南方旱坡地的应用前景[J].广东农业科学,2007,35 (10):38-41.
- [3] 陈义群,董元华. 土壤改良剂的研究与应用进展[J]. 生态环境,2008,17(3):1282-1289.

- [4] 李辉信,胡锋,沈其荣,等.接种蚯蚓对秸秆还田土壤碳、 氮动态和作物产量的影响[J].应用生态学报,2002,13 (12):1637-1641.
- [5] Taylor J P, Wilson B, Mills M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology and Biochemistry, 2002, 34(3):387-401.
- [6] 谢国雄,邱志腾,章明奎.施用生物质炭对红壤氮素供应能力的影响[J].浙江农业科学,2013,1(9):1166-1168.
- [7] 韩光明,孟军,曹婷,等.生物炭对菠菜根际微生物及土壤理化性质的影响[J]. 沈阳农业大学学报,2012,43 (5):515-520.
- [8] Khodadad C L M, Zimmerman A R, Green S J, et al.

 Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments [J].

 Soil Biology & Biochemistry, 2011, 43(2):385-392.
- [9] 刘炳君,杨扬,李强,等.调节茶园土壤 pH 对土壤养分、酶活性及微生物数量的影响[J].安徽农业科学,2011,39(32):19822-19824.
- [10] 梁斌. 黄土区不同培肥措施对土壤微生物量和可溶性有机 碳氮的影响[D]. 陕西 杨凌:西北农林科技大学,2008.
- [11] 林启美. 精氨酸氨化方法的干扰因素分析[J]. 生态学杂志,1998,17(2):68-70.
- [12] Magill A H, Aber J D. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biology & Biochemistry, 2000, 32(5):597-601.
- [13] Williams B L, Edwards A C. Processes influencing dissolved organic nitrogen, phosphorus and sulphur in soils [J]. Chemistry & Ecology, 1993, 8(3):203-215.
- [14] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277-304.
- [15] 陈心想,耿增超,王森,等.施用生物炭后塿土土壤微生物及酶活性变化特征[J].农业环境科学学报,2014,33(4):751-758.
- [16] 武玉,徐刚,吕迎春,等.生物炭对土壤理化性质影响的研究进展[J].地球科学进展,2014,29(1):68-79.
- [17] 张星,刘杏认,张晴雯,等. 生物炭和秸秆还田对华北农田玉米生育期土壤微生物量的影响[J]. 农业环境科学学报,2015,34(10):1943-1950.
- [18] 仇少君,彭佩钦,荣湘民,等.淹水培养条件下土壤微生物生物量碳、氮和可溶性有机碳、氮的动态[J].应用生态学报,2006,17(11):2052-2058.
- [19] 匡崇婷,江春玉,李忠佩,等.添加生物质炭对红壤水稻

- 土有机碳矿化和微生物生物量的影响[J]. 土壤,2012,44(4):570-575.
- [20] 谭立敏,彭佩钦,李科林,等.水稻光合同化碳在土壤中的矿化和转化动态[J].环境科学,2014,35(1):233-239.
- [21] 黄韡,吴承祯,钱莲文.生物质炭对土壤和土壤微生物 影响的研究进展[J].武夷学院学报,2014,33(2):7-11.
- [22] 白震,张明,宋斗妍,等.不同施肥对农田黑土微生物群落的影响[J].生态学报,2008,28(7):3244-3253.
- [23] Anderson J P E, Domsch K H. Quantities of plant nutrients in the microbial biomass of selected soils [J]. Soil Science, 2006, 130(4):211-216.
- [24] Campbell C A, Biederbeck V O, Zentner R P, et al. Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin Black Chernozem[J]. Canadian Journal of Soil Science, 1991, 71(3):363-376.
- [25] 张娟,沈其荣,蔡相鲁,等. 预处理秸秆与氮肥配施对两种土壤微生物量碳、氮动态变化的影响[J]. 山东农业科学,2009,108(6):82-85.
- [26] 赵满兴,周建斌,延志莲.不同土层土壤对可溶性有机 氮、碳的吸附特性研究[J].土壤通报,2010,41(6):1328-1332.
- [27] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158 (3/4):443-449.
- [28] Smebye A, Alling V, Vogt R D, et al. Biochar amendment to soil changes dissolved organic matter content and composition[J]. Chemosphere, 2015, 142(6):100-105.
- [29] 李丛蕾. 改良剂对旱地红壤团聚体稳定性及有机碳组分的影响[D]. 南昌:南昌工程学院,2015.
- [30] 闫浩.宁南山区植被恢复工程对土壤矿化过程中微生物活性与群落结构的影响[D].陕西杨凌:西北农林科技大学,2014.
- [31] 钟珍梅,黄秀声,翁伯琦,等. 沼液对种植狼尾草的山地 红壤可溶性有机氮和土壤微生物特征的影响[J]. 水土 保持学报,2015,29(5);111-116.
- [32] 赵满兴. 可溶性有机氮、碳在土壤中的吸附和降解特性研究[D]. 陕西 杨凌:西北农林科技大学,2007.
- [33] 魏珞宇. 生物灰渣和猪粪肥料化利用对土壤氮素组分的影响研究[D]. 四川 雅安;四川农业大学,2013.
- [34] 汤宏,沈健林,张杨珠,等. 秸秆还田与水分管理对稻田 土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水 土保持学报,2013,27(1):240-246.