地膜覆盖对黄土高原旱作春玉米田土壤碳氮组分的影响

付鑫,王俊,赵丹丹

(西北大学城市与环境学院,西安 710127)

摘要:基于 2 年田间试验,研究了地膜覆盖对旱作春玉米田土壤有机碳、全氮及其组分的影响,试验包括地膜覆盖玉米田、无覆盖玉米田和裸地休闲 3 个处理,分层测定了 0—40 cm 土层有机碳、全氮、颗粒有机碳氮、潜在矿化碳氮和微生物量碳氮含量。结果表明:在 0—40 cm 土层,各处理间土壤有机碳和全氮含量均无显著差异。与不覆盖相比,地膜覆盖处理 0—40 cm 土层颗粒有机碳氮及其所占比例分别降低了 29.0%,33.3%,29.9%,35.7%;0—10 cm 土层潜在可矿化碳及其所占比例分别降低了 17.8%和 16.1%,潜在可矿化氮和微生物量碳及其所占比例无显著差异,但在 0—10 cm 土层地膜覆盖微生物量氮含量及其所占比例分别较不覆盖处理提高了 10.6%和 10.5% (p<0.05)。与裸地休闲相比,无覆盖处理 0—40 cm 土层潜在可矿化碳氮分别提高了 12.8%和 14.7%,地膜覆盖处理则分别提高了 7.8%和 6.5% (p<0.05),但种植玉米降低了微生物量碳氮含量及其所占比例。在 0—40 cm 土层覆盖与否对潜在可矿化碳氮和微生物量碳氮影响不显著。总体来看,地膜覆盖能够在一定程度上提高表土微生物量氮组分及其所占比例,但显著降低了中活性碳氮组分含量及其比例,不利于长期的土壤碳氮固定。

关键词: 地膜覆盖; 土壤有机碳; 全氮; 颗粒有机碳氮; 潜在可矿化碳氮; 微生物量碳氮

中图分类号:S153.6

文献标识码:A

文章编号:1009-2242(2017)03-0239-05

DOI:10. 13870/j. cnki. stbcxb. 2017. 03. 040

Effects of Plastic Film Mulching on Soil Carbon and Nitrogen Fractions in a Dryland Spring Maize Field on the Loess Plateau

FU Xin, WANG Jun, ZHAO Dandan

(College of Urban and Environmental Sciences, Northwest University, Xi'an 710127)

Abstract: The effects of plastic film mulching on soil organic carbon and nitrogen fractions were investigated in a spring maize field. Three treatments, i. e. plastic film mulching, no mulching, and bareland fallow were included and soil organic carbon (SOC), total nitrogen (STN), particulate organic carbon and nitrogen (POC, PON), potential carbon and nitrogen mineralization (PCM, PNM), and microbial biomass carbon and nitrogen (MBC, MBN) were measured at 0-40 cm soil depths. No significant differences in SOC and STN were found among treatments for all soil depths. Compared with no mulching, the contents of POC, PON, POC/SOC, and PON/STN at 0-40 cm soil depth was decreased by 29.0%, 33.3%, 29.9%, and 35.7% by plastic film mulching, respectively. The PCM content and PCM/SOC was decreased by 17.8% and 16.1%, respectively, and the MBN content and MBN/STN at 0-10 cm soil depth was increased by 10.6% and 10.5% (p < 0.05), respectively. Compared with the bareland fallow, the content of PCM and PNM at 0-40 cm soil depth was increased by 12.8% and 14.7% by no mulching, respectively, and was increased by 7.8% and 6.5% (p < 0.05) by plastic film mulching, respectively. The contents of MBC and MBN and their contributions decreased after maize planting in spite of plastic film mulching or not. In general, plastic film mulching could increase microbial biomass nitrogen at the top layers but decrease both the contents and conributions of moderate labile fractions, indicating that plastic film mulching may not be beneficial for long-term soil nitrogen sequestration in dryland maize fields.

Keywords: plastic film mulching; soil organic carbon; total nitrogen; particulate organic carbon and nitrogen; potential carbon and nitrogen mineralization; microbial biomass carbon and nitrogen

资助项目:国家自然科学基金项目(31570440,31270484);西北大学研究生自主创新项目(YZZ13006)

第一作者:付鑫(1990—),女,博士研究生,主要从事旱作农田土壤固碳和理化性质的研究。E-mail:fuxinxin1215@163.com

通信作者:王俊(1974—),男,教授,主要从事旱作农田生态系统持续管理方面研究。E-mail:wangj@nwu.edu.cn

土壤有机碳(SOC)和全氮(STN)是衡量土壤质 量的重要指标,而耕作措施和制度时刻影响着土壤有 机碳和全氮的积累[1]。土壤有机碳和全氮因其库存 量大,对耕作措施和制度的响应时间较长。因此,单 独测定土壤有机碳和全氮并不能准确反映土壤碳和 氮的变化情况^[2]。土壤潜在可矿化碳氮(PCM、 PNM)和微生物量碳氮(MBC、MBN)属活性有机碳 和氮库,不仅表征土壤微生物的活性和含量,而且可 以在一个生长季内迅速地对耕作措施的变化做出回 应[3]。土壤颗粒有机碳和氮(POC、PON)被认为是 介于活性有机碳、氮与惰性有机碳、氮之间的中间组 分,其对管理措施的响应也非常迅速[4]。因此,通过 对活性碳、氮组分的测定对评价耕作、覆盖、施用氮肥 等管理措施所引起的土壤碳氮变化有更重要的意 义[5]。近几十年来,地膜覆盖措施因其良好的增温、 保水、增产等作用在我国北方旱区农业生产中被广泛 推广和应用[6]。罗兴录等[7]研究表明,不同地膜覆盖 方式均有改善土壤理化性状的作用。卜玉山等[1]研 究表明,地膜覆盖的增产作用是以消耗地力为代价, 会造成土壤水分、有机质和养分的下降。地膜覆盖时 间的长短对土壤碳氮含量的影响差异较大,在水肥不 能充分保证的旱地上,长期地膜覆盖会导致地力的严 重耗竭[1,5],因此,覆膜措施条件下土壤的可持续利 用就显得尤为重要。地膜覆盖对活性碳、氮组分的影 响因气候条件、生育期及覆盖方式等条件的复杂性而 不尽相同。张成娥等[8]研究表明,地膜覆盖栽培各生 长期玉米地的微生物量碳低于无覆盖处理,微生物量 氮与碳的变化趋势基本一致。已有研究发现,长期地 膜覆盖对土壤总碳、氮无显著影响,但微生物量碳氮 含量明显增加[9-10]。目前关于地膜覆盖下作物生长 及对土壤理化性状的影响研究较多,但针对地膜覆盖 措施对土壤活性碳氮组分的影响研究报道还较少。 本文基于陕西省长武县地膜覆盖试验,系统分析了地 膜覆盖对旱作春玉米田土壤碳氮组分的影响,为进一 步评价和推广地膜覆盖措施和改良该地区土壤肥力 提供理论依据。

1 材料与方法

1.1 研究区概况

试验在陕西省长武县黄土高原农业生态试验站 (107°40′E,35°12′N)内进行,试验区地处黄土高原中南部渭北旱塬上,属暖温带半干旱半湿润大陆性季风气候,是中国典型的旱作农业区。海拔1 220 m,年平均气温9.1 ℃,年日照时数2 230 h,无霜期171d,多年平均降水量584 mm。土壤属黏壤质黑垆土,土质疏松,土层深厚,肥力中等[²-11]。

1.2 试验设计

春玉米地膜覆盖试验开始于 2014 年 4 月,设 3 个处理,分别为春玉米无覆盖处理(CK)、春玉米地膜覆盖处理(PM)和裸地休闲处理(F)。各处理重复 3 次,共 9 组,小区面积 66.7 m^2 ,随机排列。试供春玉米品种为先玉 335,每年 4 月中下旬人工开沟播种,9 月中下旬收获,收获后试验地休闲。供试化肥为尿素(N \geq 46.6%)和过磷酸钙(总 $P_2O_5 \geq$ 46%)播前结合耕地施基肥 N 135 kg/hm², $P_2O_5 \approx$ 90 kg/hm²。生长期间不追肥,不灌溉。裸地休闲处理不种植玉米,地膜覆盖处理在玉米播种后覆盖。各处理均用除草剂(百草枯)控制地面杂草生长,裸地休闲处理因长期使用除草剂,新鲜植物残茬输入量忽略不计。

1.3 测定方法

于 2015 年 10 月玉米收获后,采用"S"形 5 点采样法,采集 0—10,10—20,20—40 cm 土层土样,带回实验室后自然风干,并剔除植物残体和石块。将土样分为 2 部分,一部分过 0.15 mm 筛,用于测定土壤有机碳和全氮含量;另一部分过 2 mm 筛,用于测定颗粒有机碳/氮、微生物量碳/氮和潜在可矿化碳/氮含量。

土壤有机碳和全氮采用 EA3000 元素分析仪测定 123。土壤颗粒有机碳和氮 133 测定方法如下: 称取风干土 10 g,加 5 g/L 的六偏磷酸钠溶液 30 mL,振荡 16 h 后将溶液置于 53 μm 筛上,用蒸馏水冲洗至沥滤液澄清,将过滤出的土壤在 55 ℃下烘干至恒重测定其碳氮含量。潜在可矿化碳和氮采用培养法来测定 133 ,取 10 g 土样放于烧杯中,用蒸馏水调节至50%的田间持水量,在 21 ℃下密闭培养 10 d 后测定潜在可矿化碳;将装有土样的烧杯取出,用 KCl 溶液浸提 1 h,使用 Cleverche200+间断元素分析仪测定浸提液中的铵态氮和硝态氮含量,土壤潜在矿化氮含量即为铵态氮与硝态氮之和在培养前后的差值 23。微生物量碳和氮则是将 10 g 土样培养 10 d,氯仿熏蒸 24 h 后培养 10 d,用与潜在可矿化碳、氮相同的方法测定土壤微生物量碳、氮含量 33。

1.4 数据处理

采用 Excel 2010 处理数据并制图, SPSS 20.0 进行显著性检验和分析。

2 结果与分析

2.1 地膜覆盖对土壤有机碳、全氮和颗粒有机碳、氮 含量的影响

由表 1 可知,在 0—40 cm 各土层中,不同处理方式间土壤有机碳和全氮含量无显著差异,且各处理有机碳和全氮含量均随土层的增加而降低。由表 2 可

知,在 0-10 cm 土层,PM 处理较 CK 处理颗粒有机碳含量降低了 35.3%,颗粒有机氮含量降低了 53.1% (p<0.05)。在 10-20 cm 土层,各处理间颗粒有机碳含量差异不显著(p>0.05),PM 较 CK 处理颗粒有机氮含量提高了 57.1% (p<0.05)。在 20-40 cm 土层,PM 处理较 CK 处理颗粒有机碳含量降低了 43.8%,颗粒有机氮含量降低了 53.8% (p<0.05)。总的来看,在 0-40 cm 土层中,PM 处理较 CK 处理颗粒有机碳、氮含量分别降低了 29.0%和 33.3%,F 处理较 CK 处理颗粒有机碳、氮含量分别降低了 29.0%和 33.3%,F 处理较 CK 处理颗粒有机碳、氮含量分别降低了 24.6%和 22.2% (p<0.05),PM 和 CK 之间差异不显著。在 0-40 cm 土层,颗粒有机碳氮所占比例 POC/SOC 和 PON/STN 值均表现为 CK>F>PM,PM

较 CK 处理 POC/SOC 和 PON/STN 值分别降低了 29.9%和 35.7% (p<0.05)。颗粒有机碳氮含量均 随土层的加深而降低,且 POC/SOC 和 PON/STN 值 均为 0-10 cm 土层最高。

表 1 地膜覆盖对土壤有机碳(SOC)和全氮(STN)的影响

土层	SO	C/(g • kg	⁻¹)	$STN/(g \cdot kg^{-1})$					
深度/cm	F	CK	PM	F	CK	PM			
0—10	10.45a	10.58a	10.39a	1.26a	1.31a	1.31a			
10-20	9.45a	9.24a	9.57a	1.21a	1.16a	1.24a			
20—40	7.54a	7.47a	7.62a	1.01a	0.99a	1.02a			
0-40	8.75a	8.69a	8.80a	1.12a	1.11a	1.15a			

注:F为休闲处理;CK为春玉米无覆盖处理;PM为春玉米地膜覆盖处理;小写字母表示处理间差异达到5%显著水平。下同。

表 2 地膜覆盖对土壤颗粒有机碳(POC)、氮(PON)及其相对含量的影响

土层	$POC/(g \cdot kg^{-1})$		$PON/(g \cdot kg^{-1})$			POC/SOC/%			PON/STN/%			
深度/cm	F	CK	PM	F	CK	PM	F	CK	PM	F	CK	PM
0—10	3.27ab	3.80a	2.46b	0.26b	0.32a	0.15c	31.29b	35.92a	23.68c	20.63b	24.43a	11.45c
10-20	2.02a	2.05a	2.31a	0.19b	0.14c	0.22a	21.38b	22. 19ab	24.14a	15.70a	12.07b	17.74a
20-40	1.09b	2.03a	1.14b	0.05b	0.13a	0.06b	14.46b	27.18a	14.96b	4.95b	13.13a	5.88b
0-40	1.87b	2.48a	1.76b	0.14b	0.18a	0.12b	21.37b	28.54a	20.00b	12.50b	16.22a	10.43b

2.2 地膜覆盖对潜在可矿化碳、氮含量的影响

在 0—10 cm 土层,PM 处理潜在矿化碳含量显著低于 CK 处理,降低幅度为 17.8%(p<0.05),潜在矿化氮含量差异不显著(表 3)。在 10—20 cm 和 20—40 cm 土层中,CK 与 PM 处理间潜在矿化碳氮差异均不显著。从 0—40 cm 土层中矿化碳氮平均值来看,各处理潜在矿化碳含量排序为 CK>PM>F,其中 CK 和 PM 处理间差异不显著,CK 和 PM 处理较 F 处理潜在矿化碳含

量分别提高了 12.8%和 7.8%(p<0.05)。潜在矿化氮含量排序为 CK>PM>F,其中 PM 较 CK 处理降低了 7.2%,CK 和 PM 较 F 处理分别提高了 14.7%和 6.5%(p<0.05)。各处理潜在矿化碳氮均随土层的加深而降低。在 0—40 cm 土层,潜在矿化碳所占比例 PCM/SOC 表现为 CK>PM>F,且 CK 和 PM 处理显著高于 F 处理(p<0.05);而潜在矿化碳所占比例 PNM/STN 处理间差异不显著。

表 3 地膜覆盖对土壤潜在可矿化碳(PCM)、氮(PNM)及其相对含量的影响

土层	$PCM/(mg \cdot kg^{-1})$		$PNM/(mg \cdot kg^{-1})$		PCM/SOC/%			PNM/STN/%				
深度/cm	F	CK	PM	F	CK	PM	F	CK	PM	F	CK	PM
0—10	228b	270a	222b	22.13b	27.15a	25.79a	2.18b	2.55a	2.14b	1.76b	2.07a	1.97a
10-20	178b	216a	216a	20.85b	25.87a	26.59a	1.88b	2.34a	2.26a	1.72b	2.23a	2.14a
20-40	158a	162a	168a	20.83a	22.06a	18.89a	2.10a	2.17a	2.20a	2.06a	2.23a	1.85a
0-40	180b	203a	194a	21.16b	24.28a	22.54ab	2.06b	2.34a	2.20a	1.89a	2.19a	1.96a

2.3 地膜覆盖对土壤微生物量碳、氮含量的影响

由表 4 可知,在 0—10 cm 土层,CK 和 PM 处理间微生物量碳含量差异不显著,PM 处理较 CK 处理微生物量氮提高了 10.6% (p<0.05)。在 10—20 cm 土层中,PM 处理微生物量碳含量较 CK 处理降低了 47.1% (p<0.05),CK 与 PM 间微生物量氮含量无显著差异。在 20—40 cm 土层中,CK 和 PM 间土壤微生物量碳无显著差异,F 处理微生物量氮显著高于 CK 和 PM 处理。从 0—40 cm 土层来看,各处理微生物量碳含量排序为 F

>CK>PM,CK 和 PM 较 F 处理分别降低了 18.1%和 28.1%(p<0.05);微生物量氮含量排序为 F>PM>CK,CK 和 PM 处理较 F 处理分别降低了 18.6%和 13.5%(p<0.05)。在 0—40 cm 土层,微生物量碳所占比例 MBC/SOC 值表现为 F>CK>PM,微生物量氮所占比例 MBN/STN 值表现为 F>PM>CK,其中 F 处理均显著高于 CK 和 PM 处理(p<0.05),CK 和 PM 处理间差异不显著。土壤微生物量碳氮均随土层的加深而降低,MBC/SOC 和 MBN/STN 值均为 0—10 cm 土层最高。

表 4 地膜覆盖对土壤微生物量碳(MBC)、氮(MBN)及其相对含量的影响

土层	MBC/(mg • kg ⁻¹)		$MBN/(mg \cdot kg^{-1})$			MBC/SOC/%			MBN/STN/%			
深度/cm	F	CK	PM	F	CK	PM	F	CK	PM	F	CK	PM
0—10	366a	273b	273b	35.41a	31.32b	34.63a	3.50a	2.58b	2.63b	2.81a	2.39b	2.64a
10-20	278a	263a	139b	32.25a	25.13b	28.80ab	2.94a	2.85a	1.45b	2.67a	2.17b	2. 32ab
20-40	176a	139a	151a	28.02a	22.09b	21.80b	2.33a	1.86a	1.98a	2.77a	2.23b	2.14b
0-40	249a	204b	179b	30.92a	25.16b	26.76b	2.85a	2.35ab	2.03b	2.76a	2.27b	2.33b

3 讨论

本研究表明,经过2a的地膜覆盖试验,春玉米无 覆盖、春玉米地膜覆盖和裸地休闲3种处理方式下土 壤有机碳和全氮含量并没有明显差异。卜玉山等[1]研 究认为,地膜覆盖后土壤底物中有机碳的矿化速率提 高,目地膜覆盖处理下外界有机物质的输入量较无覆 盖处理少,因此地膜覆盖措施不利于土壤有机碳的积 累。而罗兴录等[7]通过研究不同地膜覆盖方式对土壤 理化性质的影响得出,不同的覆盖方式较无覆盖均提 高了土壤有机质等养分含量。本文中覆盖与不覆盖处 理间有机碳和全氮无显著差异,这可能与本试验覆盖 时间较短,而土壤中有机碳和全氮的碳库含量较大,变 化较为缓慢而导致的。因此覆盖时间的长短和不同的 土地类型等对土壤有机碳和全氮含量有很大的影响。 Laudicina 等[14] 研究表明,与休闲处理相比,种植作物 后因增加了有机物质的输入量,土壤碳、氮含量有明显 的提高,而本研究中两者无明显差异,其原因可能与休 闲处理无耕作措施,减小了外界对土壤结构的破坏,从 而降低了因团聚体破碎而导致的有机碳损失有关。此 外,也与本试验进行时间较短有关[15]。

土壤颗粒有机碳通常由未分解或半分解的动植 物和根系残体组成,在土壤中周转速度较快,对表层 土壤中植物残体的积累和根系分布的变化非常敏感, 而颗粒有机氮含量能够提供较多的关于氮素动态变 化的信息,其含量越高,土壤的供氮潜能越大[16]。本 研究中,休闲处理颗粒有机碳和氮含量明显低于春玉 米无覆盖处理,其主要原因是种植作物后提高了新鲜 植物残茬等有机质的输入量,因此颗粒有机碳和氮含量 明显提高。且种植作物对土壤颗粒有机碳、氮的影响作 用以 0-10 cm 土层最为明显。但春玉米地膜覆盖处 理颗粒有机碳和氮含量较无覆盖处理有明显降低,可能 是因地膜覆盖后增加了土壤温度和水分,加速了植物残 茬等的分解速率,从而降低了颗粒有机碳氮含量[15]。本 文土壤颗粒有机碳氮相对含量为14.46%~31.29%和 4.95%~24.43%,这一结果较一般土壤偏低,其原因可 能与本研究土层为耕作层有关。

土壤潜在可矿化碳、氮常被认为是表征土壤微生

物活性的指标[3],其占总有机碳和全氮的百分比越 大,说明有机碳质量也就越高,稳定性越差。在本研 究中,地膜覆盖处理较无覆盖处理潜在可矿化碳和氮 含量有不同程度地降低,地表覆膜后妨碍了土壤空气 与地表空气的交换,增加了土壤二氧化碳的浓度,土 壤微生物的呼吸活性受到抑制,因此,玉米地膜覆盖 处理潜在矿化碳和氮含量低于无覆盖处理。与休闲 处理相比,种植春玉米无覆盖和地膜覆盖处理潜在可 矿化碳和氮含量均有不同程度地提高,说明种植作物可 以提高土壤微生物的活性,加速土壤碳氮的矿化速率。 地膜覆盖与否对潜在可矿化碳氮含量无明显影响。不 同土层土壤潜在可矿化碳含量也不相同,表层潜在可矿 化碳含量较深层高,主要原因是作物残体和肥料集中于 土表,且表层土壤水分、温度等条件比较适合微生物活 动和生长。在0-40 cm 各土层中,潜在可矿化碳氮相 对含量分别为 1.88%~2.55%和 1.72%~2.23%。春 玉米无覆盖和地膜覆盖潜在可矿化碳氮相对含量较 休闲处理显著提高,表明潜在矿化碳氮提高幅度显著 高于有机碳和全氮,由此可以看出潜在可矿化碳氮可 更加敏感地反映土壤碳的动态。

土壤微生物量碳、氮虽占土壤全碳和氮的比例较 小,但对土壤条件的变化反应较为敏感[2],也是反映 土壤环境变化及供应养分能力的指标之一。本研究 中,各处理土壤微生物量碳含量为139~366 mg/kg, 微牛物量氮含量为 21.80~35.41 mg/kg, 土壤微牛 物量碳占土壤总有机碳的比例变化范围为 1.45%~ 3.50%,微生物量氮占总氮含量的比例变化范围为 2.14%~2.81%,这与汪文霞等[17]的研究结果相近, 但较薛菁芳等[18]的研究结果低,这可能与本研究所 采用的测定方法、土壤类型及计算时采用的矿化系数 不一致有关。与无覆盖处理相比,地膜覆盖处理提高 了土壤表层微生物量氮相对含量,但土壤微生物量碳 相对含量无显著差异,可能是地膜覆盖后土壤有机质 的矿化速率较快而对其微生物量有一定的掩盖作 用[8]。于树等[9]研究表明,地膜覆盖对土壤微生物量 碳、氮含量的影响不显著。但也有研究发现,地膜覆 盖后改善了土壤温度和水分条件,微生物数量和活性 增加[8]。由此可以看出,地膜覆盖对土壤微生物量碳

氮的影响作用受覆盖时间、土壤性质、研究区等多种因素限制。与裸地休闲处理相比,种植玉米后土壤微生物量碳氮含量较休闲处理明显降低,耕作农田破坏了土壤团聚体,微生物自下而上环境变劣,很可能是土壤微生物生物量碳降低的原因之一,且在本研究中,地膜覆盖与否对 0—40 cm 土层微生物量碳、氮及其相对含量均无明显影响。通过微生物量碳、氮的相对含量可以看出土壤微生物量碳、氮在土壤有机碳和全氮变化之前就对土壤环境的变化做出了敏感的反映,所以它能较早地反映与预示土壤的变化,作为土壤质量的生物指标具有重要意义[9]。

4 结论

(1)经过2年的覆盖试验,春玉米无覆盖、地膜覆盖和裸地休闲3个处理间耕层及耕作下层(0—40 cm)土壤有机碳和全氮含量均未有显著差异,而潜在可矿化碳、氮等活性组分变化明显。与各活性碳氮含量相比,活性碳、氮的相对含量对各处理响应具有一致性,表明土壤碳氮组分对耕作措施的改变反映灵敏,与土壤有机碳和全氮相比而言是比较敏感的生态学指标。

(2)与无覆盖处理相比,春玉米地膜覆盖后表层土壤(0—10 cm)微生物量氮含量有显著提高,但 0—40 cm 土层颗粒有机碳氮和潜在可矿化碳氮含量及其所占比例均有不同程度地下降,表明地膜覆盖措施虽然能够活化表层土壤活性碳氮组分,但从长期来看不利于土壤碳氮固定。种植玉米较裸地休闲处理潜在可矿化碳氮含量显著提高,但种植玉米处理土壤微生物量碳氮含量较休闲处理有不同程度地降低。

参考文献:

- [1] 卜玉山,邵海林,王建程,等. 秸秆与地膜覆盖春玉米和春小麦耕层土壤碳氮动态[J]. 中国生态农业学报,2010,18(2):322-326.
- [2] 赵丹丹,王俊,付鑫.长期定位施肥对旱作农田土壤全氮及 其组分的影响[7],水土保持学报,2016,30(4);303-307.
- [3] Upendra M S, Caesar T T, Jabro J. Carbon and nitrogen fractions in dryland soil aggregates affected by long-term tillage and cropping sequence[J]. Soil Science Society of America Journal, 2009, 73(5): 1488-1495.
- [4] Upendra M S, Schomberg H H, Singh B P, et al. Cover crop effect on soil carbon fractions under conservation

- tillage cotton[J]. Soil and Tillage Research, 2007, 96 (1/2); 205-218.
- [5] 梁贻仓,王俊,刘全全,等. 地表覆盖对黄土高原土壤有机碳及其组分的影响[J]. 干旱地区农业研究,2014,32 (5):161-167.
- [6] 卜玉山,苗果园,周乃健,等. 地膜和秸秆覆盖土壤肥力效应 分析与比较[J]. 中国农业科学,2006,39(5):1069-1075.
- [7] 罗兴录,黄秋凤,郑华娟.不同地膜覆盖方式对土壤理化性状和木薯产量的影响[J].中国农学通报,2010,26 (22):372-375.
- [8] 张成娥,梁银丽,贺秀斌.地膜覆盖玉米对土壤微生物量的影响[J].生态学报,2002,22(4):508-512.
- [9] 于树,汪景宽,高艳梅. 地膜覆盖及不同施肥处理对土壤 微生物量碳和氮的影响[J]. 沈阳农业大学学报,2006,37(4):602-606.
- [10] 吴荣美,王永鹏,李凤民,等. 秸秆还田与全膜双垄集雨沟播耦合对半干旱黄土高原玉米产量和土壤有机碳库的影响[J]. 生态学报,2012,32(9):2855-2862.
- [11] 付鑫,王俊,刘全全,等.不同覆盖材料及旱作方式土壤 团聚体和有机碳含量的变化[J]. 植物营养与肥料学报,2015,21(6):1423-1430.
- [12] Aziz I, Mahmood T, Islam K R. Effect of long term no-till and conventional tillage practices on soil quality [J]. Soil and Tillage Research, 2013, 131(7): 28-35.
- [13] 方华军,杨学明,张晓平,等.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布[J].生态学报,2006,26(9):2847-2854.
- [14] Laudicina V A, Novara A, Barbera V, et al. Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a mediterranean semiarid environment[J]. Land Degradation and Development, 2015, 26(1); 42-53.
- [15] Liu C A, Jin S L, Zhou L M, et al. Effects of plastic film mulch and tillage on maize productivity and soil parameters[J]. European Journal of Agronomy, 2009, 31(4): 241-249.
- [16] 龚伟,颜晓元,蔡祖聪,等. 长期施肥对小麦一玉米作物 系统土壤颗粒有机碳和氮的影响[J]. 应用生态学报, 2008,19(11):2375-2381.
- [17] 汪文霞,周建斌,严德翼,等. 黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J]. 水土保持学报,2006,20(6):103-106.
- [18] 薛菁芳,高艳梅,汪景宽.长期施肥与地膜覆盖对土壤 微生物量碳氮的影响[J].中国土壤与肥料,2007(3):55-58.