微咸水灌溉对土壤水盐分布及冬小麦生长的影响

王海霞1,2,徐征和2,庞桂斌2,张立志2,王秀茹1

(1. 北京林业大学水土保持学院,教育部水土保持与荒漠化防治重点实验室,

北京 100083; 2. 济南大学资源与环境学院,济南 250022)

摘要:水资源短缺成为制约黄河三角洲地区社会经济发展的主要瓶颈和突出问题,合理开发利用该区的地下微咸水资源,利用微咸水进行农田灌溉已成为缓解该区域水资源短缺的重要策略之一。以黄河三角洲盐渍化典型地区为例,通过野外田间灌溉试验探讨了微咸水对土壤水盐分布特征及冬小麦生长、产量、光合作用特性的影响,并提出了土壤水盐调控措施。结果表明:(1)冬小麦生长期微咸水灌溉(淡水一微咸水一微咸水组合灌溉)增加了试验田土壤的含盐量,特别是表层 0—20 cm增加量达 0.9 g/kg;随后的雨季降水使土壤盐分得到淋洗进而避免盐分过多积累,至下一季冬小麦播种前 0—20 cm 土壤盐分增加量减至 0.12 g/kg;(2)受微咸水灌溉的影响,冬小麦灌浆期的蒸腾速率显著下降(p<0.05),但光合速率和气孔导度等差异不显著(p>0.05);(3)微咸水灌溉和淡水灌溉的冬小麦产量分别为 9 767,10 455 kg/hm²,微咸水灌溉下冬小麦略有减产,但无显著性差异(p>0.05),千粒重均为 44.9 g,2 种灌溉条件下冬小麦生长期的叶面积指数和叶绿素含量差异不显著(p>0.05)。在当地淡水资源短缺的情况下,可以考虑使用 3 g/L 的微咸水与淡水进行合理的组合灌溉,节约淡水资源,具有较好的社会经济效益,但从微咸水长期安全使用和土壤可持续利用来讲,需要采取一定的水盐调控措施并长期监测土壤盐分动态。

关键词:微咸水;土壤;盐分;冬小麦

中图分类号:S274.1 文献标识码:A

文章编号:1009-2242(2017)03-0291-07

DOI: 10. 13870/j. cnki. stbcxb. 2017. 03. 048

Effects of Brackish Water Irrigation on Water-salt Distribution and Winter Wheat Growth

WANG Haixia^{1,2}, XU Zhenghe², PANG Guibin², ZHANG Lizhi², WANG Xiuru¹

(1. Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083; 2. School of Resources and Environment, University of Jinan, Jinan 250022) Abstract: The shortage of water resources has become the main bottleneck for social and economic development in the Yellow River Delta area, thus rational exploitation and utilization of brackish water resources is an important strategy to alleviate the shortage of water resources in this area. In this paper, taking a typical area of the Yellow River Delta as an example, soil water and salt distribution characteristics and the influence of the irrigation method using fresh water and brackish water on the growth and yield of winter wheat were investigated, and some control measures of soil salt accumulation were also put forward. The results showed were as follows: (1) Brackish water irrigation increased the total salt content of the soil in the experimental plot, especially in the 0-20 cm soil layer (increment 0.9 g/kg), and the amount of salt accumulation became smaller with the increase of the depth. Plenty of rainfall in the rainy season could make the soil salinity leaching into deeper soil layer and thus avoiding excessive salt accumulation after winter wheat harvest. Salt content increment in the 0 - 20 cm soil layer decreased to 0.12 g/kg at the period of next winter wheat sowing. (2) Photosynthetic rate and stomatal conductance of winter wheat were not significantly decreased under the influence of brackish water irrigation, while significant difference in transpiration rate was observed. (3) There was no significant difference (p > 0.05) in the yield of winter wheat between the two irrigation methods using brackish water (9 767 kg/hm²) and fresh water irrigation (10 455 kg/hm²). A large amount of fresh water resources were saved, which could result in social and economic benefits. The study

收稿日期:2016-11-29

资助项目: 国家自然科学基金项目(51509105); 山东省自然科学基金项目(ZR2014EEQ020); 山东省水利科研及技术推广项目 (SDSLKY201306)

第一作者:王海霞(1980—),女,博士研究生,主要从事水土保持与水污染治理研究。E-mail:stu_wanghx@ujn. edu. cn

通信作者:王秀茹(1957-),女,博士,教授,主要从事水土保持与农田水利研究。E-mail:wang-xr@163.com

can provide a scientific reference for scientific and safe use of brackish water in the study area.

Keywords: brackish water; soil; salt; winter wheat

黄河三角洲位于山东省东部,是黄河经济带与渤海湾经济带的交汇之处,地理位置重要,经济发展潜力巨大。由于自然环境本身的制约,黄河三角洲地区地表水资源量较少,而地下水又以咸水和微咸水为主,黄河水为本区域最重要的淡水来源,区域供水压力较大。而且随着区域经济的快速发展,对水资源的需求不断增加,水资源短缺成为制约黄河三角洲地区社会经济发展的主要瓶颈和突出问题。在此背景下,合理开发利用该区的地下微咸水资源,利用微咸水进行农田灌溉已成为缓解该区域水资源短缺的重要策略之一。

与传统的淡水灌溉相比,微咸水灌溉一方面提供了冬小麦生长所需要的水分,节约了淡水资源,但同时也会增加土壤的盐分含量,盐分过度积累会影响土壤质量和冬小麦生长。目前我国已经开展了许多微咸水灌溉对土壤水盐及冬小麦生长影响的研究工作,如吴忠东等[1]通过田间试验研究了微咸水与淡水多种组合灌溉对土壤水盐分布和冬小麦产量的影响,总结了最佳的组合灌溉模式。张亚哲等[2]以河北衡水盐渍化试验田为例,分析了微咸水灌溉对冬小麦生长及土壤环境效应。逄焕成等[3]研究了鲁西北地区微咸水灌溉对冬小麦和玉米产量的影响以及麦秸覆盖对土壤盐分的调控效果。杨军等[4]研究表明,利用矿化度 2.5 g/L 的微咸水灌溉对冬小麦有一定的增产效果,而矿化度大于 3 g/L 则使冬小麦明显减产。

在取得相关研究成果的同时,也认识到我国在微 咸水灌溉方面的研究起步较晚,整体仍处于探索阶段,加之现有技术水平较低和利用成本较高,大面积的微咸水灌溉受到了限制[5]。目前微咸水灌溉大多是基于某一区域的案例研究,很难在其他区域进行直接推广,而且在微咸水灌溉对土壤理化性质及冬小麦

生理生态影响等方面有待进一步的深入研究。目前针对黄河三角洲盐渍化地区的微咸水农田灌溉研究尚未系统报道,而且微咸水灌溉对该区土壤水盐分布、冬小麦生理生态、生长及土壤环境有何影响尚不明确。因此,本文以黄河三角洲典型盐渍化地区为例,探讨微咸水灌溉条件下水盐分布特征、微咸水灌溉对冬小麦生长和产量的影响,并提出了适宜的土壤水盐调控方法,为合理开发利用微咸水资源进行农田灌溉、缓解淡水资源压力具有一定的科学意义,同时也对该区土壤环境保护及可持续利用具有重要的科学借鉴和应用价值。

1 材料与方法

1.1 研究区概况

试验区位于山东省滨州市沾化区下洼镇,属于暖 温带季风气候区,大陆性气候特征明显,四季差别显 著,年平均日照 2 690.3 h,年平均气温 12 ℃。年平 均降水量 575.5 mm, 年内降水量季节分配不均匀, 一般雨季开始于6月下旬或7月上旬,结束于8月中 下旬,历年雨季平均降水量 376.6 mm,占全年降水 量的 65.4%。本区年均蒸降比 3.22,蒸发强烈易造 成地下水上升,土壤返盐导致土壤盐碱化。试验区土 壤含盐量较高,表层含盐量随季节变化较大(1.3~ 3.0 g/kg),土壤盐渍化程度较为严重。试验区地下 水位埋深为 2~3 m,浅层地下水为咸水,矿化度 4~ 10 g/L,2016年8月地下水中主要离子浓度为:Cl-1 910 mg/L, SO₄²⁻ 1 080 mg/L, Na⁺ 1 417 mg/L, K^{+} 13. 2 mg/L, Ca^{2+} 310 mg/L, Mg^{2+} 311 mg/L. 根据土壤粒径机械组成和质地分析,0-20 cm 土层 属于壤土,20—40 cm 土层为砂质壤土,40—60 cm 土 层为砂质壤土,60-80 cm 土层为壤质砂土,80-100 cm 土层为壤土。试验田土壤理化性质见表 1。

表 1 试验田土壤理化性质

土壤理化指标	0—20 cm	20—40 cm	40—60 cm	60—80 cm	80—100 cm
рН	7.3	7.13	7.07	7.03	7.03
土壤有机质/ $(g \cdot kg^{-1})$	12.81	12.38	12.15	11.73	11.76
土壤含水率/%	17.20	17.33	14.10	15.61	21.72
容重/(g·cm ⁻³)	1.39	1.33	1.32	1.36	1.46
${ m CO_3}^{2-}/({ m g \cdot kg^{-1}})$	0.01	0.01	0.01	0.01	0.00
$\mathrm{HCO_3}^-/(\mathrm{g} \cdot \mathrm{kg}^{-1})$	0.01	0.02	0.02	0.01	0.01
$\mathrm{Cl}^-/(\mathrm{g} \cdot \mathrm{kg}^{-1})$	0.51	1.95	0.76	0.25	0.27
${ m SO_4}^{2-}/({ m g}ullet{ m kg}^{-1})$	0.46	0.42	0.36	0.18	0.22
$\operatorname{Ca}^{2+}/(\operatorname{g} \cdot \operatorname{kg}^{-1})$	0.10	0.12	0.07	0.10	0.14
$\mathrm{Mg^{2+}/(g \cdot kg^{-1})}$	0.03	0.02	0.02	0.03	0.02
$\mathrm{K}^+/(\mathrm{g} \cdot \mathrm{kg}^{-1})$	0.10	0.08	0.08	0.07	0.06
$\mathrm{Na}^+/(\mathrm{g} \cdot \mathrm{kg}^{-1})$	0.14	0.24	0.23	0.12	0.14
全盐/(g·kg ⁻¹)	1.36	2.86	1.56	0.78	0.85

1.2 研究方法

1.2.1 试验设计 试验田设置微咸水和淡水 2 种灌溉处理,每个处理设置 3 个重复小区(畦),随机排列,每个畦为 3 m×6 m,为避免侧渗干扰,小区之间设置 0.3~0.5 m隔离带,并用塑料薄膜进行垂直铺塑1.5 m深。供试作物为小麦和玉米,于 2015 年 10 月上旬播种冬小麦,2016 年 6 月中上旬收割,生育期约为 230 d,播种前施底肥(尿素约 250 kg/hm²,磷肥约 150 kg/hm²)。于 2016 年 6 月 17 日播种夏玉米,播种与生长过程正好处于本地区的雨季,玉米播种与生长期内没有进行灌溉,施尿素约 200 kg/hm²。

微咸水灌溉水源来自试验区浅层地下水,由于该

区浅层地下水矿化度为 4~10 g/L,直接灌溉会对冬小麦的生长造成严重危害甚至死亡。为此,在试验区建设了一套咸水淡化装置和一个蓄水池,将抽取的地下水和处理后的淡水储存在蓄水池进行充分混合,矿化度降至 3 g/L 后用来灌溉。淡水水源为咸水淡化处理后的淡水,矿化度为 0.20~0.23 g/L。以往研究发现冬小麦幼苗期对盐分比较敏感,为避免盐分的过度伤害,返青一拔节期间未利用微咸水^[1,6]。本次冬小麦微咸水灌溉试验采用了淡水(拔节水)、微咸水(抽穗水)、微咸水(灌浆水)的组合灌溉方案,淡水灌溉处理全部采用处理后的淡水进行灌溉。具体灌水方案见表 2。

表 2 灌水方案

灌溉处理	矿化度/(g•L ⁻¹)	冬小麦拔节期 /mm	冬小麦抽穗期/mm	冬小麦灌浆期/mm	夏玉米/mm
微咸水灌溉	2.8~3.0	80(淡水)	80(微咸水)	80(微咸水)	0
淡水灌溉	0.20~0.23	80(淡水)	80(淡水)	80(淡水)	0

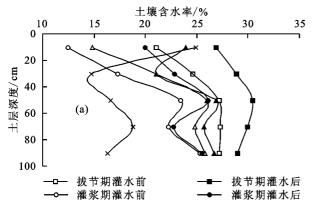
1.2.2 测定指标 在冬小麦各生育期灌溉前后及收割后利用土钻在田间取土并进行盐分测定。采集土层分别为 0—20,20—40,40—60,60—80,80—100 cm。测定指标主要包括土壤含水率、电导率、土壤可溶性离子含量、全盐量等。土壤含水率采用 PICO—BT 便携式土壤剖面水分速测仪进行土壤体积含水量的测定。将风干后的土壤样品过 2 mm 筛,按照水土比 5:1 进行振荡 3 min,过滤后的土壤浸提液用于电导率、可溶性离子和含盐量的测定。土壤浸提液的电导率使用上海雷磁 DDS—307 电导率仪测定,并转换成相应的土壤全盐含量。

冬小麦生长及产量性状的监测内容包括收割时株高、叶面积指数、穗长、千粒重、实际产量、叶绿素含量、光合速率、蒸腾速率等光合特性指标。作物株高采用直尺测量,每个处理测定 10 株,取其平均值。产量计算采用全部收割法,晒干后称重。叶面积指数利用 CI-203 手持式激光叶面积仪测定计算。叶绿素含量采用 SPAD-502 叶绿素仪测定,SPAD-502 叶绿素仪是通过测量叶片在 2 种波长光学浓度差方式(650 nm 和 940 nm)来确定叶片叶绿素的相对数量,抽穗前测定心叶下一叶功能叶片,抽穗后测定旗叶。光合特性采用英国 ADC 公司生产的 LCpro-SD 便携式光合作用仪,测量冬小麦叶片光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间 CO₂ 浓度(Ci)等生理指标。选择在冬小麦灌浆期晴好天气,于8:00-16:00 每隔 2 h 测定旗叶。

数据处理使用 IBM SPSS Statistics 软件中基于 Fisher 最小显著差数法(LSD)的单因素方差,分析微 咸水和淡水灌溉处理的显著性差异。

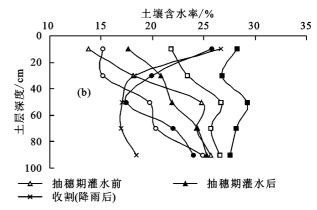
2 结果与讨论

2.1 土壤水分垂直变化


由图 1 可知,无论是淡水灌溉还是微咸水灌溉,各层土壤水分的变化规律基本一致。灌溉(拔节水 3 月 11 日—12 日、抽穗水 4 月 21 日—23 日、灌浆水 5 月 19 日—20 日)和降雨(6 月 15 日)前后变化幅度相对较大,即灌溉和降雨前土壤含水量较低,灌溉和降雨后明显增加。特别是表层 0—20,20—40 cm 土壤含水率变化幅度最大,随着土层深度的增加,土壤水分变化幅度逐渐减小。例如微咸水灌溉处理第一次灌溉前(3 月 14 日)0—20 cm 土壤含水率均 22%,灌溉后(3 月 14 日)0—20 cm 土壤含水率增至 28%,20—40 cm 由 23%增至 26%,40—60 cm 由 27%增至 29%,60—80 cm 由 26%增至 28%,80—100 cm 由 27%增至 28%。这主要是由于表层土壤受灌水、降雨和蒸发的影响较大,深层土壤受灌溉、降雨和蒸发的影响较大,深层土壤受灌溉、降雨和蒸发的影响较小[7]。

2.2 土壤盐分变化

由图 2 可知,试验开始时 0—20,20—40 cm 土壤含盐量分别为 1.4,1.9 g/kg,属于轻度盐渍化土,而且表层土壤含盐量大于底层,表聚现象较为明显。土壤盐分在土壤剖面中的运移与蒸发、灌溉和降雨密切相关。在返青一拔节灌水之前,试验区一直处于干旱少雨和无灌溉状况,且地下水埋深较浅(2.3~2.5 m),土壤水分以蒸发为主,强烈的蒸发作用使得土壤盐分呈现表聚趋势[8]。


总体来讲,由于表层土壤受灌溉、降雨和蒸发的影响较大,表层 0—20,20—40 cm 土壤含盐量变化明显,40 cm 以下土层含盐量变化较小。在利用淡水进行灌溉时,土壤含盐量整体上呈先下降后上升的波动。在每次

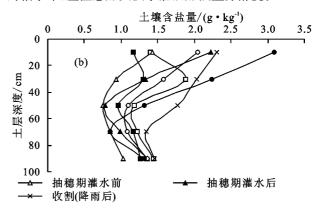
灌水后,土壤盐分随水分向下迁移明显,土壤含盐量总体呈现下降趋势。例如在拔节期(3月12日)进行了第1次灌溉,全部采用淡水灌溉,土壤盐分均呈减少趋势,起到很好的排盐作用;灌溉过后由于蒸发强烈而且无明显降雨,又出现土壤表层返盐现象,特别是0—20 cm 表层土壤增加较大。抽穗期间(4月22日)进行了第2次灌溉,微咸水灌溉使土壤含盐量增加,在0—20 cm 土层含盐量由1.4 g/kg增加至2.4 g/kg,20—40 cm 土层由0.9

注:(a)为长期淡水灌溉;(b)为长期微咸水灌溉。

g/kg增加至1.3 g/kg,其他土层盐分增加较小。淡水灌溉则起到了对土壤盐分的淋洗作用,土壤含盐量明显降低。灌浆期间(5月19日)进行了第3次灌溉,微咸水灌溉使土壤含盐量继续增加,盐分主要累计在0—20,20—40 cm 土层中,含盐量分别增加至3.1,2.2 g/kg,其他土层盐分增加不明显。许多研究也发现微咸水灌溉后土壤盐分在表层0—20,20—40 cm 增加尤为明显[3.7-8]。

图 1 冬小麦生长期淡水和微咸水灌溉处理土壤含水率的变化

小麦收割后该地区进入雨季,集中降雨使得土壤含盐量明显下降,表层 0—20,20—40 cm 尤为明显,含盐量分别由 3.1 g/kg 降至 2.3 g/kg,2.2 g/kg 降至 2.0 g/kg。因此,微咸水溉微虽然会造成土壤含盐量的增加,


上壤含盐量/(g · kg · l)
1.5 2.0 2.5

1.0 1.5 2.0 2.5

20 (a) 数节期灌水前
→ 拔节期灌水后
— 灌浆期灌水后
— 灌浆期灌水后

注:(a)为长期淡水灌溉;(b)为长期微咸水灌溉。

随后只要有充足的降水或淡水灌溉,可使土壤盐分得到 淋洗,对缓解表层土壤盐分过度累积具有一定的改善作 用,避免盐分在耕作层过多积累^[9]。特别是在降水偏少 的枯水年,应注意加大淡水灌溉加强盐分淋洗。

图 2 冬小麦生长期淡水和微咸水灌溉处理土壤含盐量的变化

2.3 微咸水灌溉后土壤盐分盈亏分析

对微咸水灌溉后 0—100 cm 土壤全盐量进行盈亏分析,是了解土壤盐分变化趋势和评价微咸水灌溉效果的重要方法^[9]。0—100 cm 土层土壤全盐量盈亏变化可用下面公式表示:

$$\Delta S = S_E - S_B$$

式中: ΔS 为试验区土壤储盐量的变化(g/kg); S_E 为试验结束后土壤的含盐量(g/kg); S_B 为试验开始时土壤的初始含盐量(g/kg)。

由表 3 可知,在冬小麦生长期微咸水灌溉处理的 土壤全盐含量均有所增加,但主要集中在 0—20 cm 土层(增加量 0.9 g/kg),土层越深盐分累积越小,60 cm 以下土壤盐分的累积量很小,如在 80—100 cm 土层含盐量增加仅为 0.01 g/kg;而淡水灌溉处理,受到淡水淋洗和蒸发运移的双重作用,土壤含盐量均下降,其中 0—20,20—40 cm 土层下降最为明显。

夏玉米生长季与研究区的雨季重叠,降雨能够满足夏玉米生长所需水分,为此没有进行灌水。在降雨的淋洗作用下,各土层土壤盐分含量总体呈下降趋势;8月底玉米收割后雨季结束,随后土壤又呈返盐趋势,例如在冬小麦播种前(10月中旬),表层土壤盐分增加明显。在整个试验期间,淡水灌溉的脱盐效果

明显,土壤的脱盐率超过了10%,表明淡水溉可将盐分淋洗到100 cm 以下土层。而微咸水灌溉处理的土

壤含盐量有所增加,造成了土壤盐分的一定累积,特别是表层积盐率近9%。

表 3 微咸水和淡水灌溉 0-100 cm 土层土壤含盐量变化

单位:g/kg

灌溉处理	土层	试验前	冬小麦收割	冬小麦生长季	雨季	玉米成熟期	冬小麦播种前	试验前后
	深度/cm	(3月)	(6月)	盐分盈亏	(7月底)	(8月底)	(10月中旬)	盐分盈亏
微咸水灌溉	0-20	1.41	2.30	+0.90	1.51	1.35	1.53	+0.12
	20-40	1.88	2.03	+0.16	1.59	1.49	1.96	+0.09
	40-60	1.18	1.78	+0.60	1.34	1.29	1.26	+0.09
	60—80	1.23	1.34	+0.12	1.21	1.19	1.24	+0.02
	80—100	1.45	1.46	+0.01	1.33	1.44	1.46	+0.01
淡水灌溉	0-20	1.48	1.14	-0.35	1.05	1.31	1.44	-0.04
	20-40	2.19	1.79	-0.40	1.48	1.35	1.95	-0.24
	40-60	2.20	2.04	-0.16	1.22	1.12	1.27	-0.92
	60—80	1.56	1.55	-0.01	1.18	1.16	1.30	-0.26
	80—100	1.76	1.63	-0.13	1.30	1.44	1.73	-0.03

2.4 微咸水灌溉对冬小麦生长、产量及光合作用特性的影响

2.4.1 徽咸水灌溉对冬小麦生长及产量的影响 微咸水灌溉易造成土壤盐分含量过高,引起盐分胁迫,同时降低土壤溶液渗透势,削弱作物的水分吸收,引起水盐联合胁迫,进而影响冬小麦的生长和产量^[10]。由图 3 可知,微咸水灌溉和淡水灌溉条件下冬小麦产量分别为 9 767 kg/hm² 和 10 455 kg/hm²,相比淡水灌溉,微咸水灌溉的冬小麦略有减产,但并无显著性差异(p>0.05)。千粒重均为 44.9 g,对麦粒种子大小和饱满程度无明显影响(图 3a)。许多研究也发现,使用矿化度小于 3 g/L 的微咸水单独灌溉或与淡水组合灌溉不会对冬小麦造成明显减产,而矿化度超过 3 g/L时,会导致冬小麦产量显著降低^[3,7-9]。

冬小麦从拔节期到灌浆期成熟期,株高不断增加。 从拔节期开始株高迅速增加,至抽穗期增加速率最高, 此后至灌浆期缓慢增加并达到平衡(图 3b)。淡水灌溉 处理的冬小麦拔节期、抽穗期、灌浆期、成熟收割期株高 分别为 12.6,59.0,74.0,74.0 cm;微咸水灌溉处理的冬 小麦拔节期、抽穗期、灌浆期、成熟收割期株高分别为 12.6,59.0,68.3,76.0 cm;2 种灌溉条件下无显著性 差异(p>0.05)。根长随着冬小麦的生长不断增加, 除了灌浆期根长有显著差别外,其他生长期并无显著 性差异(p>0.05)。微咸水和淡水灌溉的冬小麦穗 长无显著性差异(p>0.05)(图 3c)。

叶面积指数(LAI)是反映植物群体生长状况的一个重要指标,其大小与最终产量密切相关。从拔节期、灌浆期到抽穗期,冬小麦的叶面积指数不断增大,到成熟收割期减小(图 3d)。淡水灌溉的冬小麦在拔节期叶面积指数为 0.9,到抽穗期和灌浆期迅速增加至 5.3 和 6.0,此后营养生长逐渐停止进入成熟期,叶面积指数缓慢下降至 3.2。微咸水灌溉下的冬小麦在拔节期叶面积指数为 1.0,到抽穗期叶迅速增加至 6.4,此后减少至灌浆期的 4.7 和成熟期的 3.8。

经显著性差异分析发现两种灌溉条件下叶面积指数并无显著性差异(p>0.05)。从对冬小麦的生长、产量和质量的影响来看,采用矿化度 3 g/L 的微咸水(淡水一微咸水一微咸水组合模式)用于田间灌溉是可行的,而且每年能节约大量淡水资源,具有较好的社会经济效益。因此,微咸水灌溉处理可以作为冬小麦灌溉的有效水源,是节水农业的重要发展方向。但从微咸水长期安全利用来讲,长期监测土壤盐分动态并定期淡水淋洗盐分对于土壤可持续利用和微咸水安全利用是非常必要的。

2.4.2 微咸水灌溉对冬小麦光合作用特性的影响 本 试验选取冬小麦灌浆乳熟期(5月21日)测定光合特 性指标,分析不同灌溉处理下的影响。由图4可知, 淡水灌溉处理的冬小麦光合速率日变化曲线呈"M" 型(增加一减小一增加一减小)。上午光合速率随着 温度和光合有效辐射强度的增高而急速上升,在 10:00达到了第 1 个峰值; 12:00 由于温度过高和光 合有效辐射过强,为了防止叶片过分失水,冬小麦出 现"午休"现象,气孔导度减小,光合速率降到低谷,到 14:00 达到第 2 个峰值;此后,光合速率随着温度和 光合有效辐射强度的降低而下降。微咸水灌溉处理 的冬小麦光合速率日变化曲线与淡水灌溉处理的基 本相似,上午急速上升,12:00 由于温度过高和光合 有效辐射过强,孔导度减小,但是冬小麦光合速率没 有降低,而是继续增加;过峰值后,光合速率随着温度 和光合有效辐射强度的降低而下降。

与淡水灌溉相比,微咸水灌溉下冬小麦灌浆期的 光合速率和气孔导度降低,但没有达到显著性水平 (p>0.05);受到微咸水的影响,冬小麦的蒸腾速率显著 下降(p<0.05)。微咸水灌溉使得土壤可溶性盐含量增加,降低了土壤水分的有效性,引起冬小麦生理干旱。 为了阻止冬小麦叶片失水并保持叶内较高的渗透水势, 会通过减少气孔开度来抑制蒸腾作用的发生,与此同 时,也会阻碍进入叶肉细胞内参与光合作用的 CO₂,直 接导致光合效率的下降^[10]。陈素英等^[11]研究了微咸水对冬小麦灌浆期光合速率的影响,发现淡水灌溉的光合速率高于微咸水灌溉和咸淡轮灌;张余良等^[12]研究也发现微咸水灌溉降低冬小麦的光合速率。

由图 4 可知,不同灌溉处理的冬小麦叶片叶绿素含量变化规律基本一致,进入返青期后气温逐渐回升,植

株光合能力增强,叶绿素含量急剧上升;拔节一抽穗期冬小麦叶绿素含量继续增加,但增幅较小,灌浆一成熟期冬小麦生殖生长占优势,叶片等营养器官逐渐停止生长并衰老,叶绿素含量减少。这与已报道的冬小麦叶绿素变化规律一致^[11]。经显著性差异分析发现2种灌溉条件下叶绿素相对含量值无显著性差异(p>0.05)。

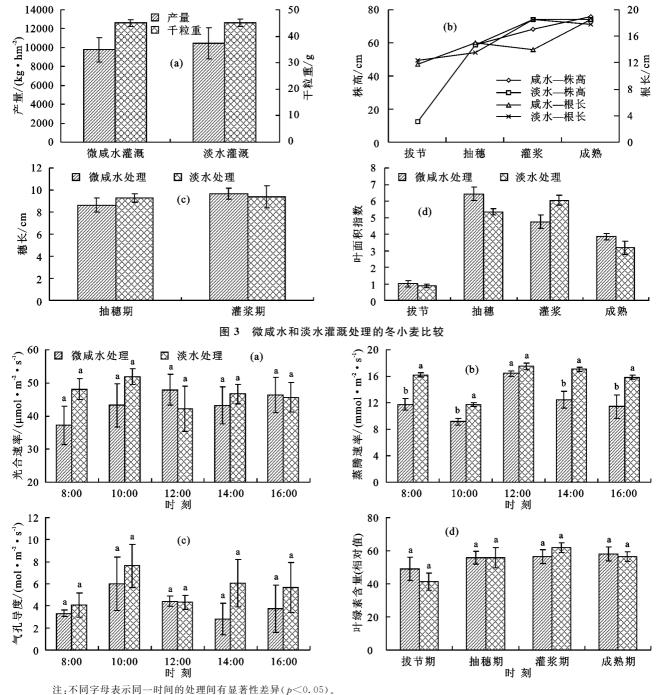


图 4 冬小麦灌浆期微咸水和淡水灌溉的光合作用特性

3 讨论

微咸水灌溉增加了土壤含盐量,如果长期使用可造成盐分的过度累积,并对土壤和冬小麦生长造成影响。为此应采取一定的调控措施改善土壤水盐分布系统,使土壤水盐分布有利于冬小麦生长,同时保护

土壤环境实现可持续利用。针对研究区的土壤、水文等自然环境特征,提出了如下土壤水盐调控措施。

3.1 咸一淡水合理组合灌溉

咸淡水合理组合灌溉是在冬小麦灌水时间内,采 用微咸水和淡水轮流灌溉的灌水方式。许多研究发 现采用淡咸淡、咸淡等多种交替组合灌溉方式,有利

于表层盐分淋洗甚至排出土层[13-14]。吴忠东等[1,13] 研究发现在使用 2 次微咸水进行组合灌溉的时候宜 采用咸淡交替灌溉的方式,以避免加重土壤的积盐程 度。逄焕成等[3]以鲁西北低平原地区为研究区,利用 3~5 g/L 矿化度的微咸水补充灌溉,微咸水灌溉带 入土体的盐分通过淡水轮灌和雨季自然淋洗,1 m 土 体总盐量达到周年平衡,没有发生积盐现象。尽管微 咸水灌溉会增加土壤的含盐量,但只要咸淡水的合理 组合灌溉,发挥淡水灌溉的盐分淋洗作用,可以使土 壤表层含盐量降低并保持在冬小麦可以正常生长的 范围内,同时为减少盐分胁迫作用避免在拔节期使用 微咸水。各个地区应根据当地气候特征与降雨分布, 制定适宜于该地区的咸水淡水组合灌溉模式。本研 究采用淡水一微咸水一微咸水的组合灌溉模式,加上 雨季降水的集中淋洗作用,有利于表层盐分淋洗甚至 排出土层,土壤盐分不会造成明显累积;但如果遇到 枯水年应及时进行淡水灌溉,防止盐分的过度积累。

3.2 土壤盐分调控措施

在采取微咸水和淡水组合灌溉模式的基础上,应适当采取一定的盐分调控措施,进一步防止土壤盐分过度积累。蒸发在一定程度上会影响土壤水分及盐分的再分布,不仅关系到土壤水分的保持,而且还能引起土壤盐分在土层中的再分布^[15]。地面覆盖措施具有保墒、降低土壤表面蒸发等特点,许多研究发现,与无覆盖措施相比较,秸秆覆盖或地膜覆盖能有效减少蒸发,起到蓄水保墒作用,降低表层土壤的盐分含量^[16-17]。另外,本地区可考虑暗管排水排盐技术进行调控,不仅能迅速排除土壤中富余的水分,降低地下水位,防止土壤返盐,为作物创造良好的生长环境,还能增强降雨和灌水淋洗盐分^[18-19]。

4 结论

- (1)冬小麦微咸水灌溉使土壤含盐量增加,特别是表层 0—20 cm 土层含盐量增加 0.9 g/kg,随着土层深度的增加,盐分的累积量变小。冬小麦收割后进入该区的雨季,大量的降雨使土壤盐分得到淋洗进而避免了盐分过多积累,但如果遇到枯水年应及时进行淡水灌溉,防止盐分的过度积累。
- (2)受到微咸水的影响,冬小麦灌浆期的光合速率和气孔导度降低,但差异不显著(p>0.05),蒸腾速率显著下降(p<0.05),叶绿素含量和叶面积指数无显著性差异(p>0.05)。相比淡水灌溉,微咸水灌溉条件下冬小麦的产量略有减小,但差异不显著(p>0.05);对麦粒种子大小、饱满程度和种子质量无明显影响。在当地淡水资源短缺的情况下,可以考虑使用3g/L的微咸水与淡水进行合理的组合灌溉,但应长期监测土壤盐分动态并定期进行淡水淋洗,保障土壤安全和可持续利用。

参考文献:

- [1] 吴忠东,王全九.不同微咸水组合灌溉对土壤水盐分布和冬小麦产量影响的田间试验研究[J].农业工程学报,2007,23(11):71-76.
- [2] 张亚哲,高业新,王建中,等. 微咸水灌溉条件下的土壤水盐 动态变化研究[J]. 中国农村水利水电,2013(1):49-54.
- [3] 逄焕成,杨劲松,严惠峻. 微咸水灌溉对土壤盐分和作物产量影响研究[J]. 植物营养与肥料学报,2004,10(6):599-603.
- [4] 杨军,邵玉翠,高伟,等. 微咸水灌溉对土壤盐分和作物产量的影响研究[J]. 水土保持通报,2013,33(2):17-20.
- [5] 刘静,高占义. 中国利用微咸水灌溉研究与实践进展 [J]. 水利水电技术,2012,43(1):101-104.
- [6] Chen L J, Feng Q, Li F R, et al. A bidirectional model for simulating soil water flow and salt transport under mulched drip irrigation with saline water[J]. Agricultural Water Management, 2014, 146(12): 24-33.
- [7] 王诗景,黄冠华,杨建国,等. 微咸水灌溉对土壤水盐动态与春小麦产量的影响[J]. 农业工程学报,2010,26(5):27-33.
- [8] 焦艳平,高巍,潘增辉,等. 微咸水灌溉对河北低平原土壤盐分动态和小麦、玉米产量的影响[J]. 干旱地区农业研究,2013,31(2);134-140.
- [9] 杨军,邵玉翠,高伟,等. 微咸水灌溉对土壤盐分和作物产量的影响研究[J]. 水土保持通报,2013,33(2):17-20.
- [10] 庞桂斌,张立志,王通,等. 微咸水灌溉作物生理生态响应与调节机制研究进展[J]. 济南大学学报(自然科学版),2016,30(4);250-255.
- [11] 陈素英,张喜英,邵立威,等. 微咸水非充分灌溉对冬小麦生长发育及夏玉米产量的影响[J]. 中国生态农业学报,2011,19(3):579-585.
- [12] 张余良,陆文龙. 微咸水灌溉对小麦生理特性及产量的影响「JT. 河南农业科学,2007,36(8):31-34.
- [13] 吴忠东,王全九. 微咸水连续灌溉对冬小麦产量和土壤理 化性质的影响[J]. 农业机械学报,2010,41(9);36-43.
- [14] 王全九,单鱼洋. 微咸水灌溉与土壤水盐调控研究进展 [J]. 农业机械学报,2015,46(12);117-126.
- [15] 马文军,程琴娟,李良涛,等. 微咸水灌溉下土壤水盐动态及对作物产量的影响[J]. 农业工程学报,2010,26(1):73-80.
- [16] Wang Q, Huo Z, Zhang L, et al. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China[J]. Agricultural Water Management, 2016, 163(1): 125-138.
- [17] 马文军,程琴娟,宇振荣.华北平原微咸水灌溉下土壤盐分淋洗规律与灌溉策略[J].干旱区资源与环境,2011,25(4):184-188.
- [18] 万长宇,张展羽,冯根祥,等.暗管排水条件下微咸水灌溉对土壤水盐运移特征的影响[J].灌溉排水学报,2016,35(3):37-41.
- [19] 冯棣,张俊鹏,孙池涛,等.长期咸水灌溉对土壤理化性质和土壤酶活性的影响[J].水土保持学报,2014,28 (3):171-176.