不同分辨率 DEM 提取切沟形态特征参数的转化研究

吴红艳1,郑粉莉1,2,徐锡蒙1,覃超1,钟科元1

(1. 西北农林科技大学水土保持研究所黄土高原土壤侵蚀与干旱农业国家重点实验室,陕西 杨凌 712100; 2. 中国科学院水利部水土保持研究所,陕西 杨凌 712100)

摘要:选取黄土丘陵区岔巴沟流域不同位置和不同沟道级别的 30条典型切沟为研究对象,基于三维激光扫描技术(LIDAR),建立了基于高分辨率 DEM 提取切沟形态特征的方法,对比分析了 0.1 m 与 5 m 2 种分辨率 DEM 提取切沟形态特征参数的差异,实现对低分辨率 DEM 提取的切沟形态特征参数向高分辨率尺度转化。结果表明:基于三维激光扫描技术获取的 0.1 m 高分辨率 DEM 提取的切沟形态特征值与手工测量的切沟形态特征值之间无显著差异,三维激光扫描技术提取的切沟长度、宽度、深度、表面积和体积分别是手工测量的 94.0%,109.1%,107.7%,80.1%和 109.0%,表明三维激光扫描技术获取的 0.1 m 高分辨率 DEM 可较准确地描述切沟形态特征。0.1,5 m 2 种分辨率 DEM 提取的切沟长度间无显著差异,但 2 种分辨率 DEM 提取的切沟宽度、深度、表面积和体积分别较实际值分别偏大 28.6%,25.6%和 19.7%;而其提取的切沟深度较实际值偏小 37.0%。据此,通过模型筛选,分别建立了 0.1 m 高分辨率 DEM 与 5 m 分辨率 DEM 提取的切沟宽度、表面积和体积转换模型。模型验证结果表明,本研究所构建的切沟宽度、表面积和体积转换模型的决定系数均大于 0.6,模型有效性系数均大于 0.5,说明 3 个转换模型均具有较好的预报精度,为研究黄土丘陵区沟蚀特征提供了重要方法和手段。

关键词:三维激光扫描技术;DEM;切沟形态特征参数;转换模型;黄土丘陵沟壑区

中图分类号:S157.1 文献标识码:A 文章编号:1009-2242(2016)06-0147-06

DOI: 10. 13870/j. cnki. stbcxb. 2016. 06. 026

Transformation of Gully Morphological Characteristic Indicators Extracted from DEMs of Different Resolution

WU Hongyan¹, ZHENG Fenli^{1,2}, XU Ximeng¹, QIN Chao¹, ZHONG Keyuan¹

(1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100;
2. Institute of Soil and Water Conservation CAS & MWR, Yangling, Shaanxi 712100)

Abstract: Gully morphological characteristic indicators are important parameters to study gully erosion processes quantitatively, but there are only a few reports on the study of gully morphological characteristics at active stage due to the limitation of DEM resolution. 30 typical gullies were randomly selected in different watershed locations and gully orders. Extraction method of gully morphological characteristic indicators was established based on the 3-D laser scanning technique (LIDAR), differences of gully morphological characteristic indicators extracted from 0.1 m and 5 m DEMs were analyzed and transform models of gully morphological characteristic indicators between different resolution DEMs were established. The results showed that gully morphological characteristic indicators extracted from 0.1 m resolution DEM and manual measurement had no significant difference; gully length, width, depth, surface area and volume extracted from 0.1 m resolution DEM was 94.0%, 109.1%, 107.7%, 80.1% and 109.0% of that obtained by manual measurement, indicating that 0.1 m resolution DEM could be used to extract gully morphological characteristic indicators accurately. Gully length extracted from 0.1 m resolution DEM had no significant difference with that extracted from 5 m resolution DEM, while gully width, depth, surface area and volume extracted from 0.1 m resolution DEM had significant difference with those extracted from 5 m resolution DEM. Gully width, surface area and volume extracted from 5 m resolution DEM was 28.6%, 25.6% and 19.7% greater than that extracted from 0.1 m resolution DEM, respectively, while gully depth extracted from 5 m resolution DEM was 37 % smaller than that extracted from 0.1 m resolution DEM. Therefore, transform models of gully width, surface area

收稿日期:2016-09-12

资助项目:国家自然科学基金项目(41271299)

第一作者:吴红艳(1991—),女,硕士,主要从事土壤侵蚀过程与机理研究。E-mail;whyyun4511@126.com

通信作者:郑粉莉(1960—),女,教授,博士生导师,主要从事土壤侵蚀过程、预报和侵蚀环境效应评价研究。E-mail:flzh@ms. iswc. ac. cn

and volume were established. Model validation results showed that the correlation coefficients of gully width, surface area and volume transform model were all greater than 0.6 and effectiveness coefficients were all greater than 0.5, indicating that the accuracies of the three transform models were all acceptable. This study provides an important method for the study of gully erosion characteristics in the loess hilly-gully region.

Keywords: 3-D laser scanning technology; DEM; gully morphological characteristic indicators; transform models; the loess hilly-gully region

切沟,尤其是发育活跃期的切沟侵蚀是黄土丘 陵沟壑区最重要的侵蚀方式之一,对流域侵蚀产沙有 重要影响和贡献[1-2]。切沟断面形态和长度变化是切 沟发育过程的重要特征,而切沟的形态特征也对应着 特定的发育阶段[3],是决定切沟输水输沙能力和稳定 程度的重要因素。前人[4]对切沟形态的定义为:切沟 是宽深均在 0.5 m 以上的侵蚀沟,长度一般不超过 百米,宽几米至几十米,沟深一米至二十米左右。切 沟基本形态特征(长度、宽度和深度)的研究是构建 切沟预报模型的基础,因而研究发育活跃期的切沟形 态特征对揭示切沟其发展规律有重要意义。传统方 法采用人工量取切沟长、宽、深等形态特征,获得小流 域切沟的形态特征,但这种方法耗时长、工作量大,工 作效率低[5]。近年来,高精度 GPS[6]、遥感影像以及 三维激光地形测量[7-8]等技术在获取高分辨率 DEM 上取得了新进展,高新测量技术与地理信息系统技术 的综合应用为切沟形态特征的精确提取提供了可 能[9]。Deng 等[10]在元谋干热河谷选取了 152 条切 沟,利用激光测距仪提取了切沟长度、宽度、深度和断 面形态等 26 个切沟形态特征指标。王庆等[11] 基于 DEM 及遥感影像对西北黄土高原区大型侵蚀沟道进 行普查,提取了侵蚀沟道的长度、面积等形态特征。 目前,大尺度切沟形态特征提取研究取得了很多进 展,但对于处于发育活跃期切沟长度小于 100 m,尤 其是切沟宽度小于 20 m 的切沟形态特征的提取 研究比较鲜见。由于高分辨率的 DEM 很难获取[12], 用于切沟形态特征提取的 DEM 分辨率普遍不高,很 难获得切沟形态特征的准确信息。因此,如何基于高 分辨率 DEM 实现对低分辨率 DEM 提取的切沟形 态特征参数向高分辨率尺度进行转化成为当前研究 的重要议题。

现有关于尺度转化的研究多是针对坡度和汇水面积等地形属性或者水文特征进行的[13]。刘爱利等[14]基于不同分辨率 DEM 提取坡度因子,并建立坡度的转换图谱; Yang 等[15]通过简化影响因子,实现粗分辨率下所得的单位汇水面积向精细尺度的转换;李静静等[16]建立了不同分辨率 SRTM DEM 数据提取河流长度的尺度转换模型; 杨邦等[17]建立了不同分辨率 SRTM DEM 数据提取河流长度的尺度转换模型; 杨邦等[17]建立了不同分辨率 SRTM DEM 数据提取水系密度和流域宽度的尺度转换模型; 田丰等[18] 对比了基于三维激光扫

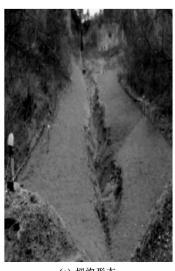
描技术生成的 1 m 分辨率 DEM 与地形图生成的普通 DEM 提取地形特征和水文特征的差异,但没有涉及尺度转换模型的研究。目前,基于三维激光扫描技术获取高精度 DEM 并建立高低分辨率 DEM 提取切沟形态特征的转换模型还较少。因此,本研究在黄土丘陵沟壑区典型小流域内选取了 30 条具有代表性的切沟,利用三维激光扫描技术在 ArcGIS 10.0 平台上获取了高分辨率(0.1 m) DEM 数据,并以 5 m 分辨率的 DEM 数据为对照,比较了 2 种分辨率 DEM 提取切沟形态特征参数的差异,建立了高低分辨率 DEM 提取切沟形态特征参数的差异,建立了高低分辨率 DEM 提取切沟形态特征的转换模型,以期为切沟的侵蚀监测及预报等研究提供技术支持和科学依据。

第 30 卷

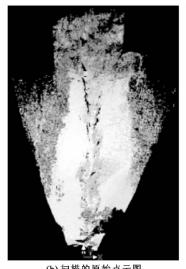
1 数据获取与方法

1.1 研究区概况

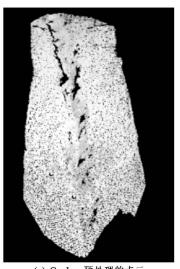
选取黄土丘陵沟壑区第一副区的岔巴沟流域为研究区(图 1)。岔巴沟流域位于陕西省子州县,东经109°47′17.18″—110°2′18.89″,北纬 N37°37′47.18″—37°47′34.80″。流域面积 205.5 km²(草坪站以上集水面积 187 km²),是无定河的一级支流大理河的支流。流域内以黄土丘陵沟谷和河谷阶地为主要地貌,侵蚀严重,沟谷发育,地形破碎。气候属于干燥少雨的大陆性气候,四季分明,年降水量约为 450 mm,年际变化较大,年内分配不均,70%以上降雨集中在6—9月份,且降雨多为强度较大而历时短暂的暴雨,年平均气温为8℃。土壤以黄土母质发育的黄绵土为主,土壤颗粒以粉粒为主,极易被侵蚀[19]。


图 1 扫描的 30 条切沟在岔巴沟流域的分布

1.2 数据基础


本研究基础数据包括: 盆巴沟流域 5 m 分辨率的 DEM 数据,由陕西省测绘局提供,西安 1980 坐标

系,高斯投影;盆巴沟流域典型切沟的 0.1 m 分辨率的 DEM 数据,于 2015 年 4 月在该研究区利用三维激光扫描仪(Leica ScanStation2)测量而获得(图 2)。利用三维激光扫描仪测量典型切沟时,所选切沟扫描密度为 1 cm,生成 DEM 分辨率为 0.1 m;此外,还选取了 6 条易于手工测量的切沟,采用测尺法(0.5 m间距,1 cm 精度)对切沟的长度、宽度和深度进行人


工测量,对变化较大的地方进行加密测量。所选取的 30 条典型切沟分布于流域的上、中、下游及左右岸,其中,相对于一级主沟道,二级切沟有 4 条,三级切沟有 21 条,四级切沟有 5 条;切沟长度和宽度从上游到下游依次降低,下游切沟深度较大。切沟长度从二级到四级切沟依次降低,三级的切沟宽度和深度较大,因而所选的 30 条切沟具有较好的代表性。

(a) 切沟形态

(b) 扫描的原始点云图

(c) Cyclone预处理的点云

图 2 切沟形态与三维激光扫描的点云图

1.3 切沟形态特征参数提取方法

三维激光扫描获取的点云数据利用自带软件 Cyclone 软件拼接、去噪,抽稀后生成点云文件,以txt 格式导出。随后,在 ArcGIS 中导入. txt 格式文件,生成 0.1 m 分辨率的 DEM。图 3 为 0.1 m 和 5 m 2 种分辨率的 DEM 基于河网提取理论提取同一条切沟形态特征参数过程的对比^[20]。

河网提取过程中,首先对原始 DEM(图 3A 和图 3a)中存在的洼地进行填洼;再采用 D8 算法,基于无 洼地 DEM 数据生成流向数据(图 3B 和图 3b),计算 洼地区域;通过调用汇流累积量函数求得栅格的汇流 累积量(图 3C 和图 3c)。汇流量阈值的设定既要保证沟道系统的连续性和完整性,又要体现其独立性,如果取值太小,则会在提取中出现大量伪切沟,如果取值太大则会忽略真实水系[21]。结合地貌特征,对汇流累积量数据进行重分类,选择 1 倍标准差,将重分类结果作为汇流阈值参考值。据此,通过大量试验后,对于 5 m 和 0.1 m 分辨率的 DEM 分别选择 45 和 20 作为最佳汇流阈值,提取流域河网(图 3D 和图 3d)。在流域河网的基础上,切沟形态特征参数的提取方法为:

切沟长度的提取:将河网数据矢量化并去除伪切 沟后,在河网图层属性表中添加 length 字段,利用 "计算几何"功能,就可获得河网水系中每一条水系长 度,即切沟长度。 切沟宽度和深度的提取:利用 ArcGIS 的剖面图功能,生成切沟横断面^[22],并分析每条切沟不同断面的宽度和深度。对于 0.1 m 分辨率 DEM,断面分析间隔是 0.5 m;对于 5 m 分辨率 DEM,断面分析间隔是 5 m。

切沟表面积的提取:对于 0.1 m 分辨率 DEM,在 ArcCatalog 中新建图层并导入 ArcGIS,勾绘切沟沟壁得到矢量图层,利用 ArcGIS 的空间分析工具中提取分析模块的掩膜提取功能得到切沟表面积矢量图层,在其属性表里计算面积字段就可以得到每个切沟的表面积;对于 5 m 分辨率 DEM,利用断面法把每一条切沟每一个测量段(5 m 间隔)的切沟表面积概化为梯形计算并求和,计算公式为:

$$A_5 = \sum_{i=1}^{n} \sum_{j=1}^{m-1} \left[\frac{(A_{iW_{j+1}} + A_{iW_j}) \cdot A_{iC_j}}{2} \right]$$

式中: A_5 为基于 5 m 分辨率 DEM 提取的切沟表面积(\mathbf{m}^2); $A_{\mathcal{K}_j}$ 为第 j 次量测第 i 条切沟的量测间距,为 5 m; A_{iW_j} , $A_{iW_{j+1}}$ 分别代表第 j 次和第 j+1 次量测第 i 条切沟的宽度(\mathbf{m});n 为流域所选切沟总条数;m 为量测次数。

切沟体积的提取:对于 0.1 m 分辨率 DEM,是利用 ArcGIS 空间分析工具中的邻域分析模块和表面分析模块得到切沟体积图层,打开其属性表即可查看切沟体积;对于 5 m 分辨率 DEM,利用断面法把每一条切沟每一个测量段(5 m 间隔)的切沟体积概化为梯形台体计算并求和,计算公式为:

$$V_{5} = \sum_{i=1}^{n} \sum_{j=1}^{m-1} \left[\frac{(V_{iW_{j}} \cdot V_{iD_{j}} + V_{iW_{j+1}} \cdot V_{iD_{j+1}} + \sqrt{V_{iW_{j}} \cdot V_{iD_{j}} \cdot V_{iW_{j+1}} \cdot V_{iD_{j+1}}}}{6}) \cdot V_{\mathcal{L}_{j}} \right]$$

式中: V_s 为基于 5 m 分辨率 DEM 提取的切沟体积 (m^3); V_{iC_j} 为第 j 次量测第 i 条切沟的量测间距,为 5 m; V_{iW_j} 、 $V_{iW_{j+1}}$ 分别代表第 j 次和第 j+1 次量测第 i 条切沟的宽度(m); V_{iD_j} 、 $V_{iD_{j+1}}$ 分别代表第 j 次和第 j+1 次量测第 i 条切沟的深度(m);n 为流域所选切沟总条数;m 为量测次数。

1.4 数据分析

基于 2 种分辨率 DEM 的切沟形态特征参数提取 是在 ArcGIS 10.0 中进行,三维激光扫描点云数据在 Cyclone 6.0 中处理,模型构建在 SPSS 20 中进行。在 构建模型时,为了保证建模数据与模型验证数据独立 性,首先从 2 种分辨率的 DEM 数据中分别随机选取 20 条切沟进行建模,然后用其余的 10 条切沟对模型进 行验证。同时,为了说明三维激光扫描技术测量切沟 形态的精度,选取了 6 条切沟进行人工测量;对比人工 测量的切沟形态与三维激光扫描技术测量切沟形态的 差异,评价三维激光扫描技术测量切沟的精度。

相关系数是评价模型实测值和模拟值密切程度的指标;Nash-Sutcliffe模型有效性系数是评价模型模拟值和实测值与1:1线拟合优度的指标。模型有效性计算公式为:

$$ME = 1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - O)^2}$$

式中:ME 为模型有效性系数; O_i 为实测值(基于 0.1 m 分辨率的 DEM 提取的切沟形态特征); P_i 为预测值(基于 5 m 分辨率的 DEM 提取的切沟形态特征);O 为实测值的平均值。

ME 介于一 ∞ ~1,该值为负,表示模型差;该值接近于 0,表示模拟结果接近观测值的平均值水平;该值接近于 1,表示模型预测性能越好。Li 等[23]认为当 $ME \geqslant 0.36$, $R^2 \geqslant 0.6$ 时,模型的预测性较好。

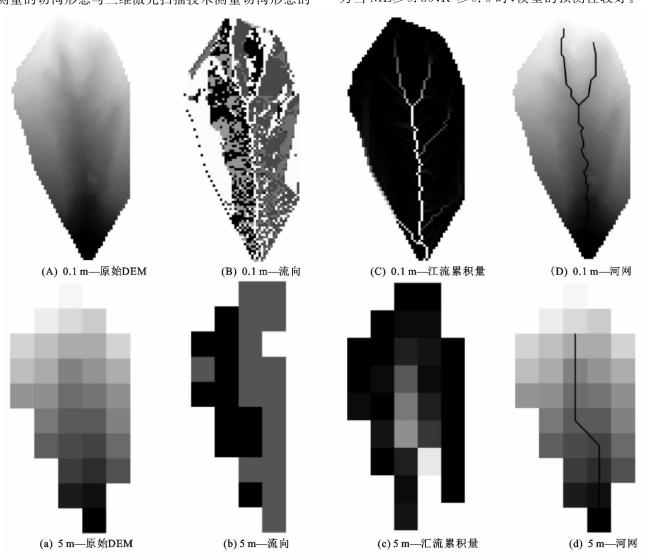


图 3 基于 0.1 m 与 5 m 分辨率 DEM 提取切沟河网结果示意

2 结果与分析

2.1 三维激光扫描数据提取切沟形态特征参数的精度分析

表1为基于三维激光扫描技术和手工测量2种方法获得的切沟长度、宽度、深度、表面积和体积。从表1可以看出,2种测量方法得到的切沟形态特征值之间无显著差异,三维激光扫描技术提取切沟长度、宽度、深度、表面积和体积分别是手工测量的94.0%,109.1%,107.7%,80.1%和109.0%,说明基于三维激光扫描技术获取的高精度DEM,可较准确获得切沟形态特征参数。

表 1 三维激光扫描技术和人工测量获得的切沟形态特征参数

获取	切沟	切沟	切沟	切沟	切沟
方法	长度/m	宽度/m	深度/m	表面积 $/m^2$	体积/m³
人工测量	52.62	5.82	4.78	482.84	827.96
0.1 m 分辨率	49.48	6. 35	5. 15	603.10	902.29
DEM 提取	43.40	0.33	J. 1J	003.10	302.23

2.2 0.1 m 与 5 m 分辨率 DEM 提取切沟形态特征 参数的对比

表 2 为 30 条典型切沟基于 0.1 m 和 5 m 分辨率

DEM 提取切沟形态特征参数的统计结果。各切沟形态特征参数的变异系数(CV)变化于 21.3%~44.9% 之间,属中度变异^[24]。变异较大的原因是所选的 30条切沟包括了流域上、中、下游不同位置以及不同级别的切沟类型。

基于 0.1 m和 5 m分辨率 DEM 提取的切沟长度间无显著差异,即用 5 m分辨率 DEM 提取切沟长度的误差仅为 3.9%,说明可用 5 m分辨率的 DEM 提取切沟长度。然而,基于 0.1 m 和 5 m分辨率 DEM 提取的切沟宽度、深度、表面积和体积间有显著差异,即用 5 m分辨率 DEM 提取的切沟宽度、表面积和体积分别较实际值大了 28.6%,25.6%和 19.7%,而其提取的切沟深度较实际值小了 37.0.%。表明 DEM 的水平分辨率对切沟形态特征的提取影响较小,而垂直分辨率对切沟形态特征的影响较大。因此,为了准确获取切沟形态特征指标,以便分析研究区的切沟侵蚀特征,有必要以高分辨率 DEM 提取的切沟形态特征参数作为基准,建立低分辨率 DEM 提取的切沟形态特征参数作为基准,建立低分辨率 DEM 提取的切沟形态特征参数作为基准,建立低分辨率 DEM 提取的切沟形态特征参数的转换模型。

表 2 0.1 m 与 5 m 分辨率 DEM 提取切沟形态特征参数	数的统计结果
------------------------------------	--------

切沟形态特征参数	不同分辨率 DEM	平均值	中位数	最大值	最小值	SD	CV/ %
In Valve	0.1 m	58.4a	55.9	88.9	33.6	12.4	21.3
切沟长度	5 m	56.1a	55.5	100.8		18.0	32.1
In March de	0.1 m	17.5a	15.9	33.7	8.0	6.3	35.7
切沟宽度	5 m	22.5b	21.7	36.8	14.0	5.3	23.6
	0.1 m	8.1a	8.0	13.7	3.8	2.4	29.2
切沟深度	5 m	5.1b	5.2	9.9	33. 6 12. 4 17. 5 18. 0 8. 0 6. 3 14. 0 5. 3 3. 8 2. 4 1. 3 2. 1 384. 1 403. 3 558. 2 430. 4 602. 8 529. 6	2.1	41.2
to M. do en en	0.1 m	898.8a	a 55.5 100.8 1 a 15.9 33.7 b 21.7 36.8 1 a 8.0 13.7 b 5.2 9.9 a 782.2 2090.3 38 b 1045.5 1933.1 55 a 1530.7 2696.2 60	384.1	403.3	44.9	
切沟表面积	5 m	1129.3b	1045.5	1933.1	558.2	430.4	38.1
1-11 11	0.1 m	1496.4a	1530.7	2696.2	602.8	529.6	35.4
切沟体积	5 m	1791.3b	1644.5	4091.1	775.6	791.1	44.2

注:同一切沟形态特征参数下不同字母表示不同测量方法经F检验差异显著(p<0.05)。

2.3 切沟形态特征参数转换模型的建立

对选定的 30 条切沟,随机选取 20 条切沟建立切沟各形态参数的转换模型,然后用剩余的 10 条切沟数据对所建转换建模进行验证。由于 2 个分辨率 DEM 提取的切沟长度无显著差异,所以这里基于0.1 m 分辨率 DEM 提取的切沟宽度、深度、表面积和体积数据,建立 5 m 分辨率 DEM 提取的切沟宽度、深度、表面积和体积的转换模型。

首先分别建立 2 种分辨率 DEM 下的切沟宽度、深度、表面积和体积各自对应的单因子转换模型(表3),发现切沟表面积转换模型的决定系数大于 0.6,说明表面积转换模型精度达到满意程度;而切沟宽度、深度和体积的转换模型的决定系数变化于 0.2~0.35,均低于 0.6,说明 3 个转换模型精度较差。据此,分别建立 2 种分辨率 DEM 下的切沟宽度、深度、表面积和体积的多因子转换模型(表 3)。比较各切

沟形态特征参数的转换模型,发现基于切沟宽度和表面积所建的宽度转换模型决定系数为 0.652,说明模型有较好的转换效果;基于切沟表面积和深度所建的体积转换模型决定系数为 0.685,达到了较好模型转换效果。而切沟深度模型的决定系数小于 0.6,说明切沟深度转换模型精度较低。其原因主要是 5 m分辨率 DEM 垂直分辨率低,不能准确反应沟深参数,而对于深度转换模型来说,垂直分辨率尤为重要,而且深度转换模型的应用意义不大。因此,这里不建议建立关于切沟深度的转换模型。

2.4 转换模型验证

为了验证切沟形态特征参数转换模型的估算精度,以 0.1 m 分辨率 DEM 提取的切沟形态特征值作为实测值,对 5 m 分辨率 DEM 提取的切沟形态特征值(宽度、表面积和体积)进行率定和验证,分析转换模型的估算精度。从图 4 可以看出,通过比较 3 个转换模型的相关

系数(R^2)和有效性指数(ME),发现切沟宽度转换模型($W=0.886W_5+0.076A_5^{0.5}-4.123$)、表面积转换模型

 $(A=0.631A_5+156.56)$ 和体积转换模型 $(V=0.105A_5D_5+1027.006)$ 均具有较好的预报精度。

表 3 切沟宽度、深度、表面积和体积的单因子和多因子转换模型

转换	· 模型	方程	R^2
	宽度的转换模型	$W = 0.623W_5 + 2.478$	0.351
У EI ¬ &	深度的转换模型	$D=0.551D_5+5.253$	0.204
单因子转换模型	表面积的转换模型	$A = 0.631A_5 + 156.56$	0.612
	体积的转换模型	$V = 0.314V_5 + 1025.649$	0.290
	宽度的转换模型	$W = 0.886W_5 + 0.076A_5$ 0.5 -4.123	0.652
多因子转换模型	深度的转换模型	$D=0.828V_5^{1/3}+0.341D_5-3.254$	0.414
	体积的转换模型	$W = 0.886W_5 + 0.076A_5$ 0.5 -4.123	0.685

注:样本数 n=20; W 为切沟宽度(m); W_5 为基于 5 m 分辨率 DEM 提取的切沟宽度(m); D 为切沟深度(m); D_5 为基于 5 m 分辨率 DEM 提取的切沟深度(m); A 为切沟表面积(m²); A_5 为基于 5 m 分辨率 DEM 提取的切沟表面积(m²); V_5 为基于 5 m 分辨率 DEM 提取的切沟体积(m³); V_5 为基于 5 m 分辨率 DEM 提取的切沟体积(m³)。

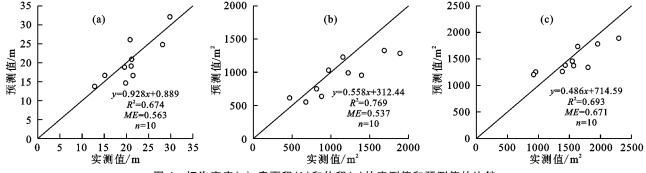


图 4 切沟宽度(a)、表面积(b)和体积(c)的实测值和预测值的比较

3 结论

以黄土高原丘陵沟壑区 30 条典型切沟为研究对象,基于三维激光扫描技术建立了 0.1 m 高分辨率 DEM 数据,并结合 5 m 分辨率的 DEM 数据,讨论了 2 种分辨率 DEM 提取切沟形态特征参数的差异,并建立了基于高分辨率 DEM 估算低分辨率 DEM 提取切沟形态特征参数的转换模型,得到结论为:

- (1)基于三维激光扫描技术生成的 0.1 m 分辨率 DEM 提取的切沟长度、宽度和深度与手工测量得到的切沟形态特征没有显著性差异。说明基于三维激光扫描技术获取的高精度 DEM,可较准确提取切沟形态特征参数。
- (2)0.1 m 高分辨率 DEM 和 5 m 分辨率 DEM 提取的切沟长度之间无显著差异,切沟宽度、深度、表面积和体积间有显著差异。因此,以 0.1 m 分辨率 DEM 提取的切沟形态特征参数作为基准,建立 5 m 分辨率 DEM 提取的切沟形态特征参数的转换模型很有必要。
- (3)通过模型筛选,建立了切沟宽度转换模型(W= 0.886W₅ + 0.076A₅ 0.5 4.123)、表面积转换模型(A= 0.631A₅ + 156.56)和体积转换模型(V= 0.105A₅ D₅ + 1027.006);对 3 个模型进行验证,发现皆具有较好的预报精度。

参考文献:

[1] 郑粉莉,江忠善,高学田.水蚀过程与预报模型[M].北京:科学出版社,2008:12-15.

- [2] Kertész á, Gergely J. Gully erosion in Hungary, review and case study[J]. Procedia-Social and Behavioral Sciences, 2011, 19:693-701.
- [3] 全迟鸣,周成虎,程维明,等.基于 DEM 的黄土塬形态特征分析及发育阶段划分[J]. 地理科学进展,2014,33 (1):42-49.
- [4] 那嘉明,杨昕,李敏,等. 黄土高原切沟地貌学研究述评 [J]. 地理与地理信息科学,2016,32(4):68-75.
- [5] 何福红,李勇,张晴文,等. 基于 GPS 不同测量间距的 DEM 地形信息提取沟蚀参数对比[J]. 水土保持学报, 2006,20(5):116-120.
- [6] 张鹏,郑粉莉,陈吉强,等.利用高精度 GPS 动态监测沟 蚀发育过程[J]. 热带地理,2009,29(4):368-373.
- [7] 徐加盼,王秋霞,邓羽松,等.基于三维激光扫描技术的 花岗岩风化土体侵蚀表面特征研究[J].水土保持学报, 2016,30(2):14-19.
- [8] 张姣,郑粉莉,温磊磊,等.利用三维激光扫描技术动态监测沟蚀发育过程的方法研究[J].水土保持通报,2011,31(6):89-94.
- [9] Zhu H C, Tang G A, Qian K J, et al. Extraction and analysis of gully head of Loess Plateau in China based on digital elevation model [J]. Chinese Geographical Science, 2014, 24(3): 328-338.
- [10] Deng Q C, Qin F C, Zhang B, et al. Characterizing the morphology of gully cross-sections based on PCA: A case of Yuanmou Dry-Hot Valley[J]. Geomorphology, 2015,228(1):703-713.

(下转第161页)