不同土壤管理措施对坡耕地土壤氮磷养分流失的控制效应

于亚莉1,史东梅2,蒋平1

(1. 重庆市水利电力建筑勘测设计研究院,重庆 400020;

2. 西南大学资源环境学院,西南大学水土保持生态环境研究所,重庆 400715)

摘要:为有效防治紫色丘陵区坡耕地水土流失和面源污染,采用径流小区定位观测法研究不同土壤管理措施下坡耕地产流产沙、养分流失及作物产量特征,进一步揭示生物炭、聚丙酰胺和玉米秸秆覆盖措施对紫色土坡耕地氮磷养分流失的控制效应。结果表明:(1)与背景值相比,土壤养分含量增幅表现为 SM(玉米秸秆覆盖)>PAM(聚丙酰胺)>BC(生物炭),表明玉米秸秆覆盖措施改善土壤养分效果最优,其次为聚丙烯酰胺。(2)不同土壤管理措施控制地表产流产沙的效应均表现为 SM>PAM>BC。BC、PAM、SM 措施产流量分别减少0.00%~54.55%,0.00%~85.79%,0.00%~92.39%,产沙量分别减少 2.67%~47.78%,5.87%~77.90%,11.47%~90.17%。在中、大雨条件下土壤管理措施减流减沙效应显著,而暴雨、大暴雨可削弱其减流减沙效益。(3)不同土壤管理措施控制氮素流失效应大小为 SM>PAM>BC。与对照相比,在中、大雨条件下,全氮流失量降低 16.24%~76.29%,水解氮流失量降低 6.21%~81.93%;而在暴雨、大暴雨条件下,全氮流失量分别减少(一11.74%)~11.99%;水解氮流失量则分别降低(一9.87%)~17.39%。表明玉米秸秆覆盖措施控制氮素流失效果最佳。(4)不同土壤管理措施控制磷素流失的效应差异明显。在中、大雨条件下,BC、PAM 和 SM 控制全磷流失效应显著(15%~81.44%),而在暴雨、大暴雨条件下其效应削弱((-6.68%)~10.98%);与对照相比,不同土壤管理措施对玉米籽粒增产效应为 SM(29.43%)>PAM(19.01%)>BC(12.66%)。生物炭、聚丙酰胺和玉米秸秆覆盖措施均可有效控制坡耕地土壤养分流失,其中玉米秸秆覆盖措施控制效应最佳。

关键词:坡耕地;土壤管理措施;耕层;产流产沙;养分流失;作物产量

中图分类号:S157.1 文献标识码:A 文章编号:1009-2242(2017)01-0030-07

DOI: 10. 13870/j. cnki. stbcxb. 2017. 01. 006

Effect of Different Soil Management Measures on Controlling Soil Nitrogen and Phosphorus Loss from Slop Farmland

YU Yali¹, SHI Dongmei², JIANG Ping¹

(1. Chongqing Surveying and Design Institute of Water Resources, Electric

Power and Architecture, Chongqing 400020; 2. College of Resources and Environment, Institute of
Soil and Water Conservation and Eco-environment, Southwest University, Chongqing 400715)

Abstract: To effectively control soil erosion and non-point source pollution of slope-farmland in purple hilly region the paper mainly studied the effect of different conservation measures on runoff, sediment and nutrient loss at natural rainfall conditions and crop yield of slope farmland by runoff plots location observation method, which deeply revealed the effect of biological carbon, poly propylene amide and straw mulching measures on controlling soil nutrient loss from slope farmland. Results indicated that: (1) Compared with the background value, the increase of soil nutrient content showed as SM (straw mulching)>PAM (polyacrylamide)> BC (biological carbon), which indicated that the corn straw mulching measures could improve soil nutrient best, followed by polyacrylamide. (2) The effects of different soil management measures to control the runoff and sediment yield changed in order as SM>PAM>BC. Measures of BC, PAM, SM could reduce runoff by 0.00%—54.55%, 0.00%—85.79%, 0.00%—92.39%, respectively, and the amount of sediment yield decreased by 2.67%—47.78%, 5.87%—77.90%, 11.47%—90.17%. In the medium and heavy rain, the

收稿日期:2016-08-19

资助项目:农业部公益性行业专项"坡耕地合理耕层构建技术指标研究"(201503119-01-01);重庆市水利局科技项目"紫色丘陵区面源污染防治措施效应评价"(2012)

第一作者:于亚莉(1977—),女,四川资阳人,主要从事水土保持规划设计及咨询工作。E-mail:13308387177@163.com

通信作者:史东梅(1970—),女,甘肃灵台人,博士,教授,博士生导师,主要从事水土生态工程、土壤侵蚀与流域治理、生产建设项目土壤侵蚀与水土保持研究。E-mail;shidm_1970@126.com

effect of protective measures on reducing runoff and sediment was significant, but it was wakened in rainstorm. (3) The effect of soil management measures on controlling nitrogen loss was in order as SM>PAM> BC. Compared with CK, under medium and heavy rain conditions, the total nitrogen loss of protection measures was reduced by 16. 24%—76. 29%, and hydrolytic nitrogen loss was reduced by 6. 21%—81. 93%; under the rainstorm condition, nitrogen loss was reduced by (-11.74%)—11. 99%; hydrolytic nitrogen loss was reduced by (-9.87%)—17.39%. The results showed that corn straw mulching was the best method to control nitrogen loss. (4) The effect of different soil management measures on controlling the phosphorus loss was different. Protective measures of BC, PAM and SM under middle and heavy rain conditions could control total phosphorus loss effectively (15.00%—81.44%), and the effect was weakened ((-6.68%)—10.98%) under rainstorm condition. Compared with CK, the effect of protection measures on increasing corn grain yield was in order as SM (29.43%)>PAM (19.01%)>BC (12.66%). The soil management measures of biological carbon, polyacrylamide and straw mulching controlled soil nutrient loss from slope farmland effectively, and straw mulching measure controlled the best.

Keywords: slop farmland; soil management measures; cultivated-layer; runoff and sediment yield; nutrient loss; crop yield

紫色土成土速率快,耕性和生产力高;但其也具 有侵蚀性高、抗旱性差、土壤退化严重等特征[1]。紫 色土坡耕地作为四川省和重庆市农业生产的主体区 域,近年来在降雨、地形等自然因素和耕作、施肥等人 为因素的综合作用下,耕层土壤退化、土地生产力下 降[2]和面源污染生态问题[3]等十分突出。相关研究 表明,次降雨过程中氮养分的流失载体主要是壤中 流,而磷的流失载体主要为泥沙,且氮磷流失量随雨 强增大而增加[4]。坡耕地土壤养分流失过程是表层 土壤养分与降雨、径流相互作用的过程[5]。地表径流 是坡耕地养分流失的主要途径,土壤养分流失在径流 系数较高的山区更加突出[6-7]。而降雨径流作为影响 坡耕地土壤肥力[8]和三峡库区面源污染程度[9]的主 要因素,坡耕地氮磷养分流失的防控是合理耕层构建 和生态环境建设亟待解决的关键问题。为减轻坡耕 地土壤受降雨侵蚀的影响,人们对农地保护措施减少 坡耕地养分流失和改善耕层土壤质量开展了大量研 究。例如施用有机肥[10]、耕作措施和秸秆覆盖[11]、植 物篱[12]等是控制土壤侵蚀的重要途径,也是控制坡 耕地土壤养分流失的主要措施。生物炭能显著减少 旱地土壤氮素淋洗和增加土壤全氮含量,进而减少由 氮素带来的环境污染以及改善土壤肥力[13]。PAM 对水土及养分流失的控制主要因为其很强的絮凝作 用,改良了土壤结构,提高了土壤渗透能力,减少地表 径流和土壤侵蚀[14]。秸秆覆盖是一种广泛应用的水 土保持农业措施,能显著减少地表径流和土壤氮磷流 失和有效促进作物对氮素的吸收[15]。不同保护措施 对坡耕地土壤养分流失的控制效果和作物产量的影 响存在较大差异。目前,生物炭、聚丙烯酰胺和秸秆 覆盖措施已被证明在耕地土壤改良以及养分流失控

制方面有较好的效果,但关于三者在紫色土坡耕地的运用及其对土壤养分流失的控制效应对比研究尚待深入。本文选择生物炭、聚丙烯酰胺、玉米秸秆覆盖3种土壤管理措施,以无土壤管理措施为对照,通过野外观测和室内试验测定次降雨后坡耕地产流产沙、养分流失和作物产量特征,探索了不同土壤管理措施对坡耕地水土、养分流失的控制效应及其对作物产量的影响,为坡耕地土壤管理农业措施选择提供技术支撑,也为紫色丘陵区坡耕地耕层质量改善和面源污染防控提供理论依据。

1 材料与方法

1.1 研究区概况

研究区域位于重庆市北碚区西南大学紫色丘陵 区坡耕地水土流失监测基地(30°26′N,106°26′E), 属亚热带季风性湿润气候,海拔高 230 m,年平均气 温为 18.3 ℃,年降雨量 1 105.4 mm,以 5—9 月的降 雨量最大,占全年雨量的 70%。地处于北碚向斜的 中部,山地丘陵地形为主。土壤主要以中生代侏罗系 沙溪庙组灰棕紫色沙泥页岩母质上发育的中性紫色 土为主,土层薄,易于崩解。

1.2 试验设计

试验共设置 4 个标准径流小区(5 m×20 m),坡度为 15°,各小区的顶部及两边设置 30 cm 挡水墙,以防径流在小区间渗漏。小区下部设置矩形集流槽收集坡面径流,并接输水槽将径流引入径流桶,并在小区旁放置雨量计以测降雨量。各小区分别设以下 4 种处理: CK(对照)、BC(单施生物炭)、PAM(表施聚丙烯酰胺)、SM(玉米秸秆覆盖)。各小区基本情况见表 1。

试验于 2015 年 4—8 月在供试作物玉米(川单13)生长期内进行,2015 年 4 月播种,同年 7 月底收

获,均为横坡种植且整个试验期间实施平作免耕。玉 米各生长期为:苗期(5月13日—5月15日)、小喇叭 口期(5月25日—5月27日)、大喇叭口期(6月17日—6月19日)、抽雄期(6月24日—6月28日)、成 熟期(7月21日—7月23日)。苗床基施氮肥(尿素: 250 kg/hm²),4月20日将三叶期的玉米幼苗从苗床移栽至径流小区,行距80 cm、株距30 cm,等高耕作,并在拔节期前追施复合肥150 kg/hm²,玉米从移栽至收获期间不灌溉,玉米生长期间不同处理田间管理措施均相同,皆参照当地农耕习惯,

表 1 标准径流小区基本情况

编号	模式	坡度/(°)	土层厚度/cm	株行距/m	处理措施
CK	对照	15	30	0.3×0.8	_
BC	单施生物炭	15	30	0.3×0.8	生物碳按 600 kg/hm²(含碳量 55%)标准与细土混匀撒施在地表
PAM	表施聚丙烯酰胺	15	30	0.3×0.8	PAM 按 2.0 g/m² 的标准溶于水进行喷施地表
SM	玉米秸秆覆盖	15	30	0.3×0.8	将玉米秸秆切成 10 cm 左右按 1 kg/m² 均匀覆盖小区地表

注:"对照"模式即不采取土壤管理措施。

1.3 样品采集与测定方法

1.3.1 样品采集与指标测定 次降雨后,先测定径流小区集水池里径流深度以计算径流总量,然后用干净的竹竿充分搅匀径流,取2瓶500 ml 水样,一瓶水样用于测定径流泥沙量,泥沙测定样品放置实验室沉淀采用烘干法测定含沙量;一瓶用来测定径流养分含量,水样总氮、水解氮、总磷、可溶性总磷分别采用碱性过硫酸钾氧化一钼蓝比色法、过硫酸钾氧化一钼蓝比色法测定。取完水样后,用清水洗净径流桶,以备下一次采样。在管理措施布置前和玉米收获后,每个小区从上到下按"S"型设置5个取样点,按0—10,10—20,20—30 cm分层取样,在每个采样点采集多个环刀样品及1~2 kg 混合样,混合样去除砾石及根系等杂物后放置实验室风干以测定土壤养分含量,土壤总氮、水解氮、总磷、可溶性总磷测定方法同上。

1.3.2 作物产量测定 待小麦和玉米成熟后全部 收获,脱粒、晒干后称取风干样品质量,并测定籽粒及 作物秸秆的含水率,进而计算各小区作物产量及地上 部分生物量。

1.4 统计分析

采用 Office Excel 2003 和 SPSS 17.0 软件进行。 方差分析采用 SPSS 中的单因素 ANOVA 模块,曲线 回归分析采用 Regression 模块分析。

2 结果与分析

2.1 不同土壤管理措施下坡耕地土壤养分变化特征

由表 2 可知,坡耕地土壤全氮和水解氮含量分别为 0.79~0.97 g/kg 和 43.56~48.78 mg/kg,土壤全磷和可溶性磷含量分别为 0.64~0.81 g/kg 和 21.35~25.34 mg/kg。不同土壤管理措施改善土壤养分的效果不同,坡耕地土壤养分含量差异显著(P<0.05)。土壤全氮含量表现为 SM>PAM>BC>CK,与对照相比,SM、PAM、BC分别增加 3.80%,10.13%,22.78%;土壤水解氮含量也表现出同样变化趋势,与对照相比,SM、PAM、BC分别增加 1.49%,6.40%,11.98%。和对照比较,SM、PAM、BC土壤全磷和可溶性磷含量大幅增加,其中土壤全磷含量分别增加 7.81%,12.50%,26.56%,可溶性磷含量分别增加 13.40%,15.46%,18.69%。表明玉米秸秆覆盖措施在坡耕地土壤养分改良方面效果最优,其次为聚丙烯酰胺。

表 2 不同土壤管理措施土壤氮磷含量变化特征

措施 -	全氮		水解氮		全磷		可溶性磷	
1日 / 四	含量/(g•kg ⁻¹)	改良效应/%	含量/(g•kg ⁻¹)	改良效应/%	含量/(g・kg ⁻¹)	改良效应/%	含量/(g•kg ⁻¹)	改良效应/%
CK	$0.79 \pm 0.08b$	16.18	$43.56 \pm 2.35b$	8.04	$0.64 \pm 0.07 \mathrm{bc}$	6.67	$21.35 \pm 1.65 $ b	15.72
BC	$0.82 \pm 0.11b$	20.59	$44.21 \pm 2.16b$	9.65	$0.69 \pm 0.06 \mathrm{b}$	15.00	$24.21 \pm 2.35a$	31.22
PAM	$0.87 \pm 0.05 \mathrm{b}$	27.94	$46.35 \pm 3.65 ab$	14.96	$0.72 \pm 0.04 \mathrm{b}$	20.00	$24.65 \pm 2.65a$	33.60
SM	0.97 \pm 0.12a	42.65	$48.78 \pm 2.96a$	20.98	0.81 \pm 0.11a	35.00	$25.34 \pm 2.75a$	37.34
背景值	$0.68 \pm 0.07c$	_	$40.32 \pm 2.41c$	_	$0.60 \pm 0.08c$		$18.45 \pm 1.48c$	

注:同一列不同小写字母表示不同措施在 0.05 水平上差异显著;改良效应=(收获后养分含量一养分背景值)/养分背景值×100%。下同。

与背景值相比,不同措施土壤养分含量均有明显增加。其中对照增幅最小,SM增幅最大,说明试验过程提高了土壤养分含量,这是施肥措施与土壤管理措施共同作用的结果。对全氮来说,CK、BC、PAM和SM措施分别增加了16.18%,20.59%,27.94%,42.65%,相比CK,BC、PAM和SM措施分别增加了

3.79%,10.13%,22.78%;对水解氮来说,BC、PAM和SM措施分别增加了1.49%,6.41%,11.98%。对全磷来说,CK、BC、PAM和SM措施分别增加了6.67%,15.00%,20.00%,35.00%,相比对照,BC、PAM和SM措施分别增加了7.81%,12.50%,26.56%;对可溶性磷来说,BC、PAM和SM措施分别增加了13.39%,

15.46%,18.69%。综上所述,表明玉米秸秆覆盖措施 改善土壤养分的效果最优,其次为聚丙烯酰胺;同时, 土壤管理措施改善土壤磷素养分的效果更佳,这主要 是土壤管理措施提高了土壤入渗性能,且氮素流失载 体主要为壤中流,导致土壤管理措施对土壤氮素蓄持 效果较磷素差。

2.2 不同土壤管理措施控制坡耕地产流产沙效应

在不同雨强条件下,坡耕地地表产流量差异显著 (表 3),CK、BC、PAM、SM产流量分别为 17.00~91.00,12.20~91.00,2.80~91.00,1.50~91.00 L,当平均雨强为 0.94~3.30 mm/h 时,不同土壤管理措施坡耕地产流量差异明显,均表现为 CK>BC>PAM>SM,且有土壤管理措施产流量明显低于对照;而当平均雨强为 3.81~

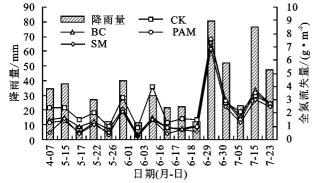
13. 42 mm/h时,不同措施之间产流量无明显差异。坡耕地地表产流量随平均雨强变化规律不明显,这主要是玉米不同生长期作物覆盖度和根系发育差异的影响。对比6月1日、6月16、6月17日3次大雨条件下的产流量可以看出,6月1日坡耕地地表产流量明显高于其余2次大雨,这可能是玉米覆盖度和根系数量的提高,有效提高了坡耕地拦截径流的效应。不同次降雨条件下,坡耕地地表产沙量均以对照最大,CK、BC、PAM和SM产沙量分别为0. 25~32. 14,0. 19~29. 82,0. 18~30. 25,0. 15~28. 45 g/m²,变异系数分别为1. 56,1. 68,1. 89,2. 02。不同土壤管理措施坡耕地产沙量差异明显,均表现为CK>BC>PAM>SM,且有土壤管理措施产流量明显低于对照。

表 3 不同土壤管理措施坡耕地地表产流产沙特征

日期	降雨量/	降雨	平均雨强/	击刑		产流	量/L			产沙量/	(g • m ⁻²)	
(月-日)	mm	历时/h	$(mm \cdot h^{-1})$	雨型	CK	ВС	PAM	SM	CK	ВС	PAM	SM
4-07	34.8	37	0.94	中雨	33.00	15.00	12.60	6.50	1.25	0.84	0.70	0.28
5-15	37.8	14	2.70	大雨	42.70	30.00	21.50	14.70	9.77	5.10	2.65	1.70
5-17	8.9	6	1.48	中雨	21.10	12.20	9.60	5.30	0.25	0.19	0.18	0.15
5-22	27.2	19	1.43	中雨	37.90	23.70	19.80	11.70	0.94	0.81	0.70	0.38
5-26	12.1	6	2.02	中雨	19.70	9.80	2.80	1.50	0.39	0.28	0.24	0.19
6-01	39.7	17	2.34	大雨	55.20	42.70	37.20	29.70	1.80	1.07	0.75	0.50
6-03	11.5	8	1.44	中雨	17.00	15.00	6.90	5.00	0.87	0.64	0.48	0.32
6-04	29.7	9	3.30	大雨	57.50	52.30	40.40	37.70	6.62	4.98	1.62	0.80
6-16	21.6	10	2.16	大雨	30.30	18.00	13.00	13.50	0.49	0.46	0.31	0.24
6-17	22.1	11	2.01	大雨	31.70	20.00	12.50	10.50	2.08	1.58	0.46	0.20
6-18	12.4	7	1.77	中雨	32.10	20.90	13.70	11.30	1.02	0.61	0.35	0.28
6-29	80.5	6	13.42	大暴雨	91.00	91.00	91.00	91.00	32.14	29.82	30.25	28.45
6-30	52.2	11	4.75	暴雨	78.00	78.00	78.00	78.00	31.82	27.76	28.65	27.41
7-05	23.2	38	0.61	中雨	32.50	21.00	14.70	10.00	1.02	0.74	0.52	0.28
7-15	76.2	20	3.81	暴雨	87.30	86.50	86.40	85.80	14.30	12.03	13.13	10.32
7-23	47.6	12	3.97	暴雨	59.40	58.90	56.30	57.20	3.75	3.65	3.40	3.08

与对照相比,不同土壤管理措施对坡耕地地表 产流产沙的控制效应差异明显(表 4),BC、PAM 和 SM 产流量减少率分别为 0.00%~54.55%,0.00%~ 85.79%,0.00%~92.39%,产沙量减少率分别为 $2.67\% \sim 47.78\%$, $5.87\% \sim 77.90\%$, $11.47\% \sim 90.17\%$, 不同土壤管理措施控制地表产流产沙的效应均表 现为 SM>PAM>BC, 表明玉米秸秆覆盖措施减流 减沙效果最优,其次为聚丙酰胺措施。在不同降雨条 件下土壤管理措施减流减沙效益差异明显,在中、大雨 条件下,BC、PAM 和 SM 径流减少率分别为 9.04%~ 54.55%,29.74%~85.79%,34.43%~92.39%,产沙量 减少率分别为 16.92%~47.78%,25.80%~77.90%, 50.31%~90.17%;在暴雨、大暴雨条件下,BC、PAM和 SM 径流减少率分别为 0.00%~0.92%, 0.00%~ 5. 22%,0.00%~3.70%,产沙量减少率分别为 2.67%~ 15.87%,5.87%~9.33%,11.47%~17.87%,表明3种 土壤管理措施在一定降雨量和降雨强度范围内可较

好的控制坡耕地产流产沙,而当降雨量和降雨强度达到暴雨后,减流减沙效益明显降低。


2.3 不同土壤管理措施控制坡耕地土壤氮磷养分流 失效应

对氮素流失具有较大影响,在强降雨条件下,地表土壤结构易破坏,径流量与产沙量显著增加,径流对土

壤的洗蚀作用增强,加上携带养分的泥沙量增加,导 致氮素养分流失量明显增加。

主 1	不同志强下-	上壤管理措施对产流	* 产业的协制协应
₹ 4		「珠官姓拾敝划产》	

日期	平均雨强/	武山	径流量较	交对照 CK 的减	少率/%	产沙量较	交对照 CK 的凋	√率/%
(月-日)	$(mm \cdot h^{-1})$	雨型 -	ВС	PAM	SM	BC	PAM	SM
4-07	0.94	中雨	54.55	61.82	80.30	32.80	44.00	77.60
5-15	2.7	大雨	29.74	49.65	65.57	47.78	72.87	82.59
5-17	1.48	中雨	42.18	54.50	74.88	24.00	28.62	40.00
5-22	1.43	中雨	37.47	47.76	69.13	13.80	25.80	59.72
5-26	2.02	中雨	50.25	85.79	92.39	27.27	37.66	50.65
6-01	2.34	大雨	22.64	32.61	46.20	40.37	58.33	72.22
6-03	1.44	中雨	11.76	59.41	70.59	26.70	45.02	63.35
6-04	3.3	大雨	9.04	29.74	34.43	24.77	75.53	87.92
6-16	2.16	大雨	40.59	57.10	55.45	16.92	36.61	50.31
6-17	2.01	大雨	36.91	60.57	66.88	24.33	77.90	90.17
6-18	1.77	中雨	34.89	57.32	64.80	40.20	66.14	72.35
6-29	13.42	大暴雨	0.00	0.00	0.00	7.21	5.87	11.47
6-30	4.75	暴雨	0.00	0.00	0.00	12.79	9.97	13.87
7-05	0.61	中雨	35.38	54.77	69.23	27.45	49.02	72.55
7-15	3.81	暴雨	0.92	1.03	1.72	15.87	8.18	27.83
7-23	3.97	暴雨	0.84	5.22	3.70	2.67	9.33	17.87

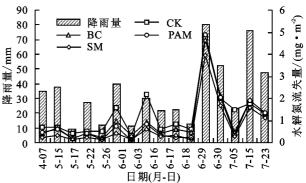


图 1 不同土壤管理措施坡耕地次降雨径流氮素流失量

不同土壤管理措施控制坡耕地土壤氮素流失的 效应差异较大(表 5),除暴雨和大暴雨条件外,BC、 PAM、SM 土壤管理措施均可有效减少土壤氮素流 失量。与对照 CK 相比, BC、PAM 和 SM 在中、大 雨条件下全氮流失量分别降低 16.24%~59.04%, $27.44\% \sim 70.91\%, 33.45\% \sim 76.29\%, 其水解氮流失$ 量分别降低 6. $21\% \sim 68$. 92%, 12. $17\% \sim 77$. 12%, 54.20%~81.93%;而在暴雨、大暴雨条件下,BC、PAM 和 SM 全氮流失量分别减少(-11.74%)~2.33%, 5.70%~(-2.37%), 6.52%~11.99%; 其水解氮流 失量分别降低 $(-6.96\%)\sim 2.45\%, (-9.87\%)\sim$ (-2.02%),8.99%~17.39%。表明3种土壤管理 措施在中雨、大雨条件下可显著降低氮素流失,同时 生物炭和聚丙酰胺措施在暴雨、大暴雨条件下控制氮 素流失的效应明显弱化;玉米秸秆覆盖措施控制氮素 流失效果最佳,其次为聚丙酰胺措施。这主要是玉米 秸秆覆盖措施减流减沙效应较高,可有效减少随径流 和泥沙流失的氮素。林超文等[11]研究发现秸秆覆盖

较无措施组可减少 12.8%~65.1% 氮素流失,由于本试验小区均进行横坡耕作,因此秸秆覆盖措施控制 氮素流失的效应更高。

2.3.2 磷素流失特征 紫色土坡耕地磷素流失量受降雨影响较大,雨强越大磷损失量显著增大 [4]。与氮素流失量相比,坡耕地土壤径流磷素流失量明显减少 (表 6)。次降雨条件下,对照、生物炭、聚丙酰胺和玉米秸秆覆盖管理措施土壤全磷流失量分别为 $0.109 \sim 2.898,0.058 \sim 2.963,0.049 \sim 3.024,0.024 \sim 2.599$ g/m²,其变异系数分别为 1.49,1.44,1.82,1.59; 其可溶性磷流失量分别为 $0.063 \sim 2.657,0.033 \sim 2.699,0.014 \sim 2.773,0.016 \sim 2.415 \ mg/m²,变异系数分别为 <math>1.68,1.52,1.98,1.70$ 。

降雨量对磷素流失也有较大影响,基本随降雨量增大而增加。在 6 月 29 日大暴雨条件下,全磷流失量均达到最大,具体表现为 PAM(3.024 g/m^2)>BC(2.963 g/m^2)>CK(2.898 g/m^2)>SM(2.599 g/m^2);可溶性磷流失量也呈现同一变化规律,即 PAM(2.773 mg/m^2)>

 $BC(2.699 \text{ mg/m}^2)$ > $CK(2.657 \text{ mg/m}^2)$ > $SM(2.415 \text{ mg/m}^2)$,说明强降雨对磷素流失有较大影响。

与对照相比,不同土壤管理措施对坡耕地土壤磷素流失的防控效应差异明显(表 7)。在中、大雨条件下,BC、PAM和SM全磷流失量较对照分别降低 15.15%~54.02%,24.70%~81.44%,25.06%~80.91%,其可溶性磷流失量分别降低 4.25%~59.53%,12.17%~87.49%,21.10%~83.96%;而在暴雨、大暴雨条件下,

BC、PAM、SM 全磷流失量分别减少(-6.68%)~(-2.25%),(-5.80%)~(-1.66%),0.87%~10.98%;其可溶性磷流失量分别降低(-2.56%)~(-1.60%),(-10.73%)~(-0.12%),3.55%~10.42%。这与氮素流失防控效应变化特征相似,表明单施生物炭和表施聚丙烯酰胺在暴雨条件下未能起到控制磷素流失的作用,而玉米秸秆覆盖起到很好的防治作用;且降雨强度可削弱土壤管理措施对磷素流失的控制效应。

# <i>=</i>	工 🖯 土 福 等 评 拱 按 对 执 拱 44 久 汝 气 毛 汝 先 的 按 患 苯 庆
表 5	不同土壤管理措施对坡耕地径流氮素流失的控制效应
-	

		• •						
日期	平均雨强/	哥耶	全氮流生	夫量较 CK 的凋	√率/%	水解氮流失	量较对照 CK	的减少率/%
(月-日)	$(mm \cdot h^{-1})$	雨型	ВС	PAM	SM	BC	PAM	SM
4-07	0.94	中雨	36.45	47.36	76.29	37.87	33.82	68.48
5-15	2.70	大雨	29.40	38.82	33.45	6.21	13.89	54.20
5-17	1.48	中雨	34.16	63.05	70.38	56.54	51.45	67.59
5-22	1.43	中雨	31.93	36.87	45.36	21.13	12.17	54.66
5-26	2.02	中雨	23.37	58.53	43.50	55.95	73.53	69.93
6-01	2.34	大雨	26.34	28.47	33.58	39.70	53.97	72.44
6-03	1.44	中雨	58.67	70.91	74.10	6.23	77.12	62.48
6-04	3.30	大雨	59.04	62.57	62.90	58.63	62.78	72.22
6-16	2.16	大雨	32.85	27.44	66.16	31.79	47.49	55.37
6-17	2.01	大雨	48.85	53.37	51.16	24.85	74.38	61.45
6-18	1.77	中雨	32.16	36.33	60.31	25.59	63.53	77.46
6-29	13.42	大暴雨	2.33	-1.17	9.30	2.45	-2.94	17.39
6-30	4.75	暴雨	-7.05	-4.21	11.99	-6.96	-2.02	15.96
7-05	0.61	中雨	16.24	28.78	39.53	68.92	77.33	81.93
7-15	3.81	暴雨	-11.74	-5.70	9.42	-8.25	-9.87	8.99
7-23	3.97	暴雨	-1.42	-2.37	6.52	-3.24	-5.30	11.93

表 6 不同土壤管理措施坡耕地次降雨径流磷素流失特征

日期	降雨量/		全磷流失量	(g • m ⁻²)		可	溶性磷流失	量/(mg·m	-2)
(月-日)	mm	CK	ВС	PAM	SM	СК	ВС	PAM	SM
4-07	34.8	0.208	0.176	0.157	0.156	0.172	0.164	0.139	0.135
5-15	37.8	0.238	0.190	0.119	0.068	0.177	0.167	0.083	0.050
5-17	8.9	0.125	0.104	0.069	0.024	0.095	0.078	0.054	0.016
5-22	27.2	0.248	0.199	0.185	0.127	0.179	0.165	0.157	0.103
5-26	12.1	0.109	0.058	0.049	0.037	0.080	0.033	0.022	0.026
6-01	39.7	0.520	0.354	0.384	0.225	0.418	0.266	0.348	0.179
6-03	11.5	0.136	0.103	0.025	0.026	0.114	0.087	0.014	0.018
6-04	29.7	0.964	0.469	0.395	0.408	0.613	0.304	0.279	0.235
6-16	21.6	0.251	0.115	0.073	0.128	0.185	0.109	0.046	0.100
6-17	22.1	0.296	0.198	0.081	0.101	0.261	0.099	0.056	0.090
6-18	12.4	0.150	0.104	0.077	0.038	0.108	0.068	0.060	0.020
6-29	80.5	2.754	2.869	2.914	2.599	2.504	2.563	2.773	2.415
6-30	52.2	2.898	2.963	3.024	2.580	2.657	2.699	2.719	2.394
7-05	23.2	0.111	0.064	0.073	0.036	0.063	0.046	0.032	0.022
7-15	76.2	0.503	0.537	0.520	0.499	0.483	0.506	0.495	0.432
7-23	47.6	0.385	0.406	0.391	0.367	0.352	0.361	0.353	0.323

2.4 不同土壤管理措施对坡耕地作物产量的影响

由表 8 可知,不同土壤管理措施作物生物量差异显著(P<0.05)。与对照相比,土壤管理措施具有明显的增产效应,其中 SM 措施作物产量最高。坡耕地玉米籽粒产量为 3 245.6~4 200.8 kg/hm²,产量变化表现为SM(4 200.8 kg/hm²)>PAM(3 862.7 kg/hm²)>BC(3 656.5 kg/hm²)>CK(3 245.6 kg/hm²),与对照相比,

BC、PAM、SM分别增产12.66%,19.01%,29.43%;玉米总生物量在14 651.2~16 250.3 kg/hm²之间,与对照相比,BC、PAM和SM分别增产6.08%,3.96%,10.91%。表明3种土壤管理措施均可有效提高作物产量,其中玉米秸秆覆盖措施增产效果最好,这主要是玉米秸秆覆盖措施可有效控制土壤氮磷养分流失,增加作物生长所需养分的供给量。

表 7	不同土壤管理措施对坡耕地径流磷素流失的控制效应
100	

日期	平均雨强/	まず	全磷流生	夫量较 CK 的凋	(少率/%	可溶性磷流	失量较对照 CK	的减少率/%
(月-日)	$(mm \cdot h^{-1})$	雨型 -	ВС	PAM	SM	BC	PAM	SM
4-07	0.94	中雨	15.15	24.70	25.06	4.25	18.82	21.10
5-15	2.70	大雨	20.34	50.04	71.34	5.93	53.39	72.03
5-17	1.48	中雨	16.68	44.59	80.91	18.17	43.07	83.72
5-22	1.43	中雨	19.99	25.43	48.73	7.87	12.17	42.55
5-26	2.02	中雨	46.70	55.32	65.87	59.53	72.48	67.62
6-01	2.34	大雨	31.90	26.21	56.74	36.50	16.93	57.16
6-03	1.44	中雨	24.65	81.44	80.63	23.61	87.49	83.96
6-04	3.30	大雨	51.33	59.06	57.62	50.42	54.58	61.71
6-16	2.16	大雨	54.02	71.12	48.84	41.20	75.20	46.02
6-17	2.01	大雨	33.20	72.57	65.96	62.21	78.41	65.74
6-18	1.77	中雨	30.70	48.56	74.45	36.86	44.29	81.34
6-29	13.42	大暴雨	-4.19	-5.80	5.63	-2.33	-10.73	3.55
6-30	4.75	暴雨	-2.25	-4.35	10.98	-1.60	-2.34	9.88
7-05	0.61	中雨	42.17	34.21	67.51	26.97	49.37	65.77
7-15	3.81	暴雨	-6.68	-3.26	0.87	-4.85	-2.63	10.42
7-23	3.97	暴雨	-5.56	-1.66	4.68	-2.56	-0.12	8.29

表 8 不同土壤管理措施作物生物量特征

措施 -	生物产量/(kg • hm ⁻²)	较 CK 增产率/%		
	籽粒产量	总生物量	籽粒产量	总生物量	
CK	3245.6c	14651. 2c	_	_	
BC	3656.5b	15542.3b	12.66	6.08	
PAM	3862.7b	15232. 1b	19.01	3.96	
SM	4200.8a	16250.3a	29.43	10.91	

3 结论

(1)不同土壤管理措施均可有效提高土壤养分含量。与背景值相比,土壤养分含量增幅表现为 SM(秸秆覆盖)>PAM(聚丙酰胺)>BC(生物炭)。对全氮来说,BC、PAM 和 SM 措施分别增加了 20.59%,27.94%,42.65%;对全磷来说,BC、PAM 和 SM 措施分别增加了 15.00%,20.00%,35.00%,表明玉米秸秆覆盖措施改善土壤养分的效果最优,其次为聚丙烯酰胺。

(2)不同土壤管理措施对坡耕地产流产沙的控制效应差异明显,其控制坡耕地产流、产沙效应均表现为 SM>PAM>BC。BC、PAM和SM措施产流量减少率分别为 0.00%~54.55%,0.00%~85.79%,0.00%~92.39%,产沙量减少率分别为 2.67%~47.78%,5.87%~77.90%,11.47%~90.17%。在中、大雨条件下土壤管理措施减流减沙效应显著,而在暴雨、大暴雨条件下土壤管理措施减流减沙效益削弱。

(3)不同土壤管理措施控制氮素流失效应大小为 SM>PAM>BC。与对照相比,在中、大雨条件下,保护措施全氮流失量降低 16.24%~76.29%,水解氮流失量降低 6.21%~81.93%;而在暴雨、大暴雨条件下,全氮流失量分别减少(-11.74%)~11.99%;水解氮流失量分别降低(-9.87%)~17.39%。表明生物炭和聚丙酰胺措施在暴雨、大暴雨条件下控制氮素流失的效应明

显弱化;玉米秸秆覆盖措施控制氮素流失效果最佳。

(4)不同土壤管理措施控制磷素流失的效应差异明显。BC、PAM和SM在中、大雨条件下控制全磷流失的效应显著(15.00%~81.44%),而在暴雨、大暴雨条件下其效应削弱((-6.68%)~10.98%);与对照相比,不同土壤管理措施玉米籽粒增产效应表现为SM(29.43%)>PAM(19.01%)>BC(12.66%)。

参考文献:

- [1] 何毓蓉. 中国紫色土[M]. 下篇. 北京: 科学出版社, 2003.
- [2] 朱波,况福虹,高美荣,等. 土层厚度对紫色土坡地生产力的影响[J]. 山地学报,2009,27(6):735-739.
- [3] 何晓玲,郑子成,李廷轩,等.不同耕作方式对紫色土侵 蚀及磷素流失的影响[J].中国农业科学,2013,46(12): 2492-2500.
- [4] 林超文,罗春燕,庞良玉,等.不同雨强和施肥方式对紫色土养分损失的影响[J].中国农业科学,2011,44(9):1847-1854.
- [5] 王丽,王力,王全九,等.不同坡度坡耕地土壤氮磷的流 失与迁移过程[J].水土保持学报,2015,29(2):69-75.
- [6] 王克勤,宋泽芬,李太兴,等. 抚仙湖一级支流尖山河小流域的面源污染物贡献特征[J]. 环境科学学报,2009,29(6):1321-1328.
- [7] 曾立雄,黄志霖,肖文发,等.三峡库区不同土地利用类型氮磷流失特征及其对环境因子的响应[J].环境科学,2012,33(10):3390-3396.
- [8] 严冬春,文安邦,龚长文,等.紫色土陡坡耕地顺坡垄作条件下的土壤及其流失特征[J].山地学报,2014,32 (3):314-319.
- [9] 徐畅,谢德体,高明,等. 三峡库区小流域旱坡地氮磷流 失特征研究[J]. 水土保持学报,2011,25(1):1-5,10.

(下转第42页)