重庆市典型工程堆积体边坡物理力学变化及稳定性特征

丁文斌1,李叶鑫2,史东梅1,蒋光毅3

- (1. 西南大学资源环境学院,西南大学水土保持生态环境研究所,重庆 400716;
- 2. 辽宁工程技术大学环境科学与工程学院,辽宁 阜新 123000;3. 重庆市水土保持生态环境监测总站,重庆 401147)

摘要:以重庆市城镇建设活动形成的典型工程堆积体为研究对象,对工程堆积体边坡物理力学特性和入渗特征进行了研究,同时确定了工程堆积体边坡的危险滑动面及安全系数。在工程堆积体边坡上、中、下设置采样点,采集土壤样品进行土壤物理力学性质分析,采用野外双环入渗法进行入渗过程研究,运用 GEO-SLOPE 软件分析工程堆积体边坡稳定性。结果表明:(1)工程堆积体粒度分布不均匀,且<2 mm 粒径的含量随着堆放时间的增加而增大;各工程堆积体分形维数在 2.04~2.47 之间变化,且表现为上坡位>中坡位>下坡位。(2)工程堆积体饱和含水量随坡位下降呈逐渐增加趋势;入渗率随时间变化呈快速减小、缓慢减小、稳定入渗 3 个阶段,2 m,2 a 和 4 a 堆积体稳定入渗率分别为 4.53,3.17,7.02 mm/min。(3)不同堆放时间的工程堆积体剪切力和剪切位移的关系呈硬化型曲线;粘聚力和内摩擦角分别在 16.43~31.88 kPa 和 2.23°~41.69°之间;不同堆放时间的工程堆积体安全系数均大于 1.5,其稳定性大小依次为 2 a>2 m>4 a,最危险滑动面的安全系数分别为 1.77,2.23,1.66。比较而言,堆放 2 a 的工程堆积体稳定性最好,堆放 2 m 的次之,堆放 4 a 的工程堆积体稳定性最差。

关键词:边坡稳定性;工程堆积体;水土流失;物理力学特性;入渗特征;GEO-SLOPE软件

中图分类号:S157.1

文献标识码:A

文章编号:1009-2242(2017)01-0109-07

DOI: 10, 13870/j. cnki. stbcxb, 2017, 01, 019

Physical and Mechanical Changes and Stability Characteristics of the Typical Engineering Accumulation Slope in Chongqing

DING Wenbin¹, LI Yexin², SHI Dongmei¹, JIANG Guangyi³

(1. College of Resources and Environment, Institute of Soil and Water Conservation and Eco-environment,

Southwest University, Chongqing 400716;2. College of Environment Science and Engineering, Liaoning Technical University,

Fuxin, Liaoning 123000;3. Chongqing Eco-environment Monitoring Station of Soil and Water Conservation, Chongqing 401147)

Abstract: This article mainly targets on the investigated engineering spoils were typical of those placed during urban construction activities in Chongqing. Studied on physical and mechanical properties and infiltration characteristics of engineering accumulation body slope and determined the dangerous slip surface and safety factor of the slope of the engineering accumulation. The sampling points were arranged in the slope, the middle and the bottom and soil physical and mechanical properties were analyzed by collecting soil samples of the engineering accumulation, the infiltration process was studied by using the field double ring infiltration method, and the stability of the slope was analyzed by GEO-SLOPE software. The results showed as follows:(1) The grain size distribution of the engineering accumulation was not uniform, and the content of ≤ 2 mm particle size increased with the stacking time. The fractal dimension of each engineering accumulation varied from 2.04 to 2.47, and it showed up-slope>middle-slope>down-slope. (2) The saturated-water content of the engineering accumulation body gradually increases with the descending of the slope position; Infiltration rate with time showed three stages (rapid reduction, slow reduction, stable infiltration). The stable infiltration rates of the 2-month engineering accumulation (2 m), 2-year engineering accumulation (2 a) and 4-year engineering accumulation (4 a) were 4.53 mm/min, 3.17 mm/min and 7.02 mm/min, respectively. (3) The relationship between the shearing force and the shear displacement of the engineering accumulation in different stacking time is hardened; the cohesion values and internal frictional angles of all of the engineering accumulation were 16.43—31.88 kPa and 2.23°—41.69°. The safety factors of the critical slip surfaces of the

收稿日期:2016-07-29

资助项目:重庆市水利局科技项目"生产建设项目弃土弃渣水土流失规律研究";重庆市生产建设项目"水土流失危害研究"

第一作者:丁文斌(1991—),男,硕士研究生,主要从事土壤侵蚀与流域治理研究。E-mail;dingwenbin88@126.com

slopes underlain by the various engineering spoils were greater than 1.5, and the stability order is 2 years > 2 months > 4 years, the safety factor of the most dangerous sliding surface were 1.77, 2.23 and 1.66. By comparison, stacking 2 years of engineering accumulation body stability is the best, stacked in February of the second, stacked 4 years of accumulation of the worst stability.

Keywords: slope stability; engineering spoil; soil and water loss; physical characteristics; infiltration characteristics; GEO-SLOPE software

随着我国社会经济的蓬勃发展,城镇建设过程在 剥离表土、开挖地基的过程中产生大量的弃土弃渣, 形成了物质组成复杂、结构松散的工程堆积体。工程 堆积体由于边坡陡、短促、疏松、地面组成物质复杂等 不同于原下垫面的物质组成结构和堆积特性,在水力 和重力共同作用下,比原地貌更易产生大量人为泥石 流、人为崩塌和滑坡等水土流失[1-4]。作为特殊的人 为边坡,工程堆积体边坡失稳造成的危害严重。胡明 鉴等[5]通过室内降雨装置研究了降雨条件下松散砾 石土斜坡稳定性;刘建伟等[6]通过分析不同时期弃渣 场边坡不同坡位的物理性质及抗剪强度变化特征,认 为饱和含水率与细粒组成对弃渣场坡面土体稳定性 具有重要影响;张家铭等[7]通过模拟软件研究了弃渣 场边坡稳定性的敏感因素,认为弃渣场滑动面处强度 参数对边坡稳定性影响很大。近年来,各类工程建设 施工形成的工程堆积体数量不断增多,导致边坡失稳 造成的危害进一步加剧,因此分析工程堆积体边坡稳 定性并进一步确定滑动面的位置非常必要。

本文以重庆市生产建设活动形成的典型工程堆

积体为研究对象,对工程堆积体边坡粒度分布特征、物理力学性质、入渗特征及边坡稳定性进行了系统研究,探讨工程堆积体物理性质的空间和时间变化,确定工程堆积体失稳时的滑动面和安全系数,以期为重庆市工程堆积体水土流失防治及其滑坡等地质灾害的发生提供科学依据。

1 材料与方法

1.1 研究区概况

研究区位于重庆市北碚区水土镇(106°30′43″ E, 29°47′6″ N),海拔 245 m,年平均气温 18.3 ℃,年降雨量 105.4 mm,5—9 月的降雨量占全年雨量的 70%,研究区主要土壤类型为中生代侏罗系沙溪庙组灰棕紫色沙泥页岩母质上发育的中性紫色土,该土壤类型是重庆地区主要的土壤类型,在该区域具有明显的代表性和典型性,主要植被有蕨类、狗尾草、宽叶台草等。由于不同的堆放时间造成工程堆积体的物质组成结构和堆积特性不同,因此本文选择工程堆积体包括 2 个月工程堆积体(2 m)、2 年工程堆积体(2 a)和 4 年工程堆积体(4 a)。各工程堆积体基本情况见表 1。

地貌单元	编号	占地面积/m²	高度/m	边坡坡度/(°)	边坡植被覆盖度/%	堆放形态	堆放时间
2 m 工程堆积体	2 m	10487.80	15.3	25.5	10	平台型	2 个月
2 a 工程堆积体	2 a	13726.34	8.1	32.0	40	平台型	2年
4 a 工程堆积体	4 a	12634.57	13.2	34.8	90	平台型	4年

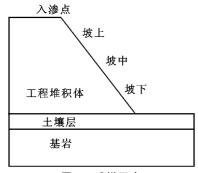


图 1 采样示意

1.2 研究方法

1.2.1 工程堆积体边坡物理性质测定 试验于2013年4月在重庆市北碚区水土镇进行。在工程堆积体边坡上、中、下3个坡位分别采集容重和抗剪强度试样,并采集5kg混合散样(图1)。土壤含水量采用烘干法测定,土壤容重、土壤密度、孔隙度和饱和含水量均采用环刀法测定,液、塑限采用光电式液塑限联合测定仪测定[8]。颗粒分布特征采用筛分法测定,

并确定有效粒径 d_{10} 、中间粒径 d_{30} 和控制粒径 d_{60} ,并按照公式(1)和公式(2)计算平均粒径 d 和离散系数 $k^{[9]}$,饱和度和孔隙比通过计算得到。

$$d = \frac{\sum u_i d_i}{u_i} \tag{1}$$

$$k = \frac{\sqrt{\frac{\sum (d_i - d_j)^2 u_i}{u_i}}}{\frac{u_i}{d_i}} \times 100\%$$
 (2)

式中:k 为粒径不均匀度(%); d_i 为不同等级弃渣的平均粒径(mm); d_j 为某一粒径的平均粒径(mm); u_i 为相应某一粒径所占重量百分比。

在边坡顶部平台采用野外双环入渗法^[9]测定不同堆积体边坡入渗过程,其中内环直径为 15 cm,外环直径为 30 cm,高度为 20 cm。试验时双环垂直打入土中 10 cm,环内土壤表层保持 5 cm 水层并通过马氏瓶向外环加水保持水头恒定,每隔一定时间向内环加水并记录加水量,试验时间为 90 min。不同堆

积体边坡入渗率计算公式为:

$$v = \frac{10Q_n}{s \times t_n} \tag{3}$$

式中:v 为不同堆积体边坡在某一时刻的土壤入渗率 (mm/min); Q_n 为第 n 次测定时间内的加水量(ml);S 为 渗透面面积 (cm^2) ; t_n 为第 n 次测定时间间隔(min)。

1.2.2 工程堆积体边坡力学性质测定 采用 ZJ 型应变控制式直剪仪测定土样的抗剪强度指标(内摩擦角 φ 和粘聚力c)。荷载压力分别 100,200,300,400 kPa,量力环率定系数为 1.623 kPa/0.01 mm。抗剪强度采用库伦公式计算:

$$\tau = \sigma t g \varphi + c \tag{4}$$

式中: τ 为抗剪强度(kPa); σ 为剪切力(kPa); φ 为土壤内摩擦角(°);c 为土壤粘聚力(kPa)。

1.2.3 工程堆积体边坡粒度分布的分形特征 依据分形理论, Tyler 和 Wheatcraft 于 1992 年提出了采用质量一粒径关系的分形结构模型^[10]:

$$\frac{M(r)}{M} = r^{3-D} \tag{5}$$

式中:M(r)为粒径小于 r 的颗粒累计质量(g);M 为测试样品的总质量(g); $\frac{M(r)}{M}$ 为粒径小于 r 的弃渣的筛下质量累计百分含量;r 为孔径(mm);D 为分维数。作出 $\frac{M(r)}{M}$ -r 在双对数坐标系下的图形,求出直线部分的斜率 k,即可得到堆积体颗粒分布的分维数(D=3-k)。

1.2.4 工程堆积体边坡稳定性分析 采用 GEO-SLOPE 软件对边坡稳定性及最危险滑动面进行分析。该软件是由加拿大 GEO-SLOPE 国际有限公司开发,其中 SLOPE/W 模块是以极限平衡法为计算原理,专门用来进行边坡稳定分析的。该模块嵌套了Ordinary、Bishop、Janbu 和 Morgenstern-Price 等分析方法,能准确、快速地求解出最小安全系数和最危险滑动面,广泛应用于各类边坡稳定性分析。

2 结果与分析

2.1 工程堆积体边坡颗粒分布特征

2.1.1 不同堆积体粒度分布规律 为了研究堆放时间对堆积体粒度分布的影响,对上、中、下3个坡位的粒度分布进行计算,得到相应的综合平均分布曲线(图2)。

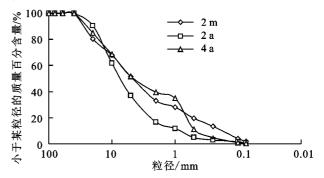


图 2 堆积体粒度分布曲线

由图 2 可知,工程堆积体粒度分布不均匀且不同堆放时间工程堆积体之间存在差异性。3 个堆积体粒度分布主要集中在 2~20 mm,其中 2 a 堆积体的含量最高,为 73.79%,4 a 堆积体仅为 45.61%。2 m 堆积体>20 mm 含量达到 19.62%,粗颗粒含量较高,岩石风化程度弱。紫色母岩的风化速度是其他母岩类型无法比拟的,其侵蚀模数可达 23 640 t/(km²•a)。通过对 3 个堆积体粒度分析可知,4 a 堆积体<2 mm含量(39.48%)明显高于2 m 和 2 a,其主要原因是随着堆放时间的延长,工程堆积体由于风化时间较长,细颗粒增多。

2.1.2 不同坡位粒度分布规律及其分形特征 由表2可知,同一堆积体不同坡位粒度分布规律存在差异。堆积体各坡位粒度分布不均匀且粗颗粒含量粒径较大,其中在统计范围内粒径>2 mm 的粗颗粒含量在62.20%以上,>10 mm 的粗颗粒含量在26.19%以上。2 a 堆积体>10 mm 颗粒含量随距坡顶距离的增加而增加,而<2 mm 颗粒含量则相反。

表 2 工程堆积体不同坡位粒组频率分布

单位:%

编号						粒组/mm				
細亏	40~20	20~10	10~5	5~2	2~1	1~0.5	0.5~0.25	0.25~0.1	0.1~0.075	<0.075
2 m-U	12.58	13.61	18.54	20.02	5.08	8.27	5.55	11.25	2.54	2.56
2 m-M	27.82	15.13	16.57	14.75	3.60	6.08	4.12	8.53	1.66	1.74
2 m-D	18.47	8.13	14.34	20.85	6.05	10.82	9.20	8.96	1.48	1.70
2 a-U	5.77	32.41	22.85	20.70	5.67	7.85	1.84	1.38	1.01	0.52
2 a-M	4.76	27.52	26.24	21.61	5.26	8.20	2.22	1.82	1, 11	1.26
2 a-D	17.66	26.66	25.43	17.95	4.21	4.97	1.18	0.97	0.50	0.47
4 a-U	14.62	13.49	14.41	17.95	4.84	10.29	12.69	9.71	1.33	0.67
4 a-M	11.94	17.45	16.83	8.39	7.59	35.68	0.94	0.55	0.25	0.38
4 a-D	18.17	18.59	19.82	9.89	0.95	25.36	5.63	1.07	0.18	0.34

注:2 m-U代表2个月堆积体边坡-上;2 m-M代表2个月堆积体边坡-中;2 m-D代表2个月堆积体边坡-下;2 a-U代表2年堆积体边坡-上;2 a-M代表2年堆积体边坡-中;2 a-D代表2年堆积体边坡-下;4 a-U代表4年堆积体边坡-上;4 a-M代表4年堆积体边坡-下。下局。

由表 3 可知,各堆积体的平均粒径在 8.09~12.51 mm 之间变化,离散系数在 0.81~1.24 之间变化,表明堆积体粒度分布极不均匀,粒径大小不一。尽管各堆积体粒度尺度范围达 40 mm(0~40 mm),但各样点的 lg[M(r < R)/M]与 lg r 之间存在很好的线性相关性,回归决定系数 R^2 均在 0.8 以上,说明堆积体弃渣粒度分布具有良好的分形结构,在统计意义上满足自相似规

律。分形维数的大小反映了堆积体的粒度组成,是描述堆积体中不同粗细含量的定量指标。其分形规律是分形维数越小,散体中粗颗粒成分越多;分形维数越大,细颗粒成分越多^[10]。所测 9 个样本基本上反映了这个规律,其分形维数在 2.04~2.47 之间变化。各堆积体上坡位的分形维数在 2.18~2.47 之间,平均值为 2.43,中坡位和下坡位形分维数的平均值分别为 2.20 和 2.15。

表 3 工程堆积体不同坡位粒度分布特征及分形结果

编号	有效粒径 d ₁₀ /mm	中间粒径 d30/mm	控制粒径 d60/mm	平均粒径 d/mm	离散系数	分形维数 D	决定系数 R ²
2 m-U	0.2	1.0	6.0	8.09	1.18	2.47	0.90
2 m-M	0.2	2.8	12.1	12.51	0.94	2.43	0.92
2 m-D	0.2	0.9	5.2	8.79	1.24	2.40	0.88
2 a-U	0.8	3.5	9.5	9.19	0.82	2.18	0.97
2 a-M	0.7	3.2	8.1	8.43	0.85	2.29	0.98
2 a-D	1.8	4.0	12.1	11.94	0.81	2.14	0.99
4 a-U	0.2	0.7	5.5	8.33	1.22	2.31	0.80
4 a-M	0.6	0.9	7.0	8.14	1.17	2.04	0.87
4 a-D	0.6	0.9	9.1	10.30	1.03	2.08	0.88

2.2 工程堆积体边坡物理性质变化特征

2.2.1 不同堆积体边坡主要物理性质变化 由表 4 可知,堆积体天然密度在 1.35~1.91 g/cm³ 之间,干密度在 1.20~1.64 g/cm³ 之间,数值变化范围较大,其主要原因为碎石在一定程度上影响了堆积体内部颗粒之间的排列。所测样品中,饱和含水量下坡位>中坡位>上坡位,其最大值为 42.31%,最小值为 23.36%;塑性指

数也具有相同的变化规律,各工程堆积体上坡位的塑性指数在 13.6~24.9 之间,平均值为 18.67,中坡位、下坡位塑性指数的平均值分别为 18.47 和 25.87,说明工程堆积体下坡位颗粒能吸附更多水分,这证实了堆积体饱和含水量的变化规律。2 a 和 4 a 堆积体的液性指数在0~1 之间,呈塑态;而 2 m 堆积体的液性指数为负数,说明其颗粒呈坚硬状态,这与堆积体风化程度有关。

表 4 工程堆积体边坡物理性质变化

编号	天然	天然密度/	干密度/	饱和	孔隙比	饱和度/	塑限/	液限/	塑性	液性
細亏	含水量/%	$(g \cdot cm^{-3})$	(g • cm ⁻³)	含水量/%	九阴几	0/0	0/0	0/0	指数	指数
2 m-U	9.61	1.63	1.49	23.36	0.17	41.13	12.3	25.9	13.6	-0.2
2 m - M	7.69	1.65	1.53	27.05	0.13	28.42	11.8	26.6	14.8	-0.3
2 m-D	7.86	1.57	1.46	25.64	0.13	30.64	9.3	29.0	19.7	-0.1
2 a-U	14.63	1.70	1.48	26.68	0.28	54.82	8.7	33.6	24.9	0.2
2 a-M	19.05	1.91	1.61	28.38	0.44	67.12	9.1	31.4	22.3	0.4
2 a-D	15.01	1.89	1.64	27.58	0.33	54.42	2.6	30.9	28.3	0.4
4 a-U	11.22	1.66	1.50	30.24	0.20	37.09	7.6	25.1	17.5	0.2
4 a-M	9.43	1.37	1.25	30.40	0.13	31.03	7.4	25.7	18.3	0.1
4 a-D	12.04	1.35	1.20	42.31	0.17	28.46	5.2	34.8	29.6	0.2

2.2.2 不同堆积体边坡入渗特征 不同工程堆积体的入渗过程差异显著(图 3)。在入渗初期(0~10 min),尤其是 0~4 min 内,堆积体具有较高的入渗率,4 a 堆积体的初始入渗率可达到 15.84 mm/min。主要是由于堆积体结构松散,大孔隙发达,水分在重力作用下迅速向下运动;同时地表和水流周围的细小颗粒随着水分向下运动,使得入渗通道(路径)逐渐被堵塞,入渗率降低。随着入渗时间的延续,2 m,2 a,4 a 堆积体入渗率降低至7.36,5.94,9.34 mm/min(10 min 时)。

在 10~30 min 阶段,人渗率依然呈下降趋势,但下降趋势减缓且存在一定程度的波动,3 个堆积体的 30 min 瞬时人渗率分别为 6.00,4.41,7.81 mm/min,其变化幅度在 1.36~1.75 mm/min 之间。该

阶段人渗率减小的主要原因是:随着工程堆积体含水量的增加,饱和度增大,人渗梯度减小,导致人渗率减小;另一方面,由于细小颗粒的流失,使得上层大颗粒逐渐被架空,在水力和重力共同作用下形成小范围的塌陷,影响水分的人渗路径。

在稳定人渗阶段(30~90 min),人渗率继续呈减小趋势,但减小明显变缓。不同堆放时间的工程堆积体稳定人渗率由大到小依次为 4 a(7.02 mm/min)>2 m(4.53 mm/min)>2 a(3.17 mm/min),较 30 min 人渗率分别降低了 10.12%,24.50%和 28.12%。4 a 堆积体稳定人渗率最大,这是由于堆放时间长,母岩风化而形成土壤团聚体,根系通过穿插、网络和固结等作用以改善土壤结构和孔隙度,同时根系与土壤的接触面形

2. 3. 1

2.3 工程堆积体边坡力学性质特征

边坡剪应力与剪切位移特征

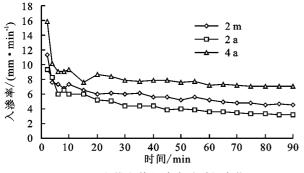
随着剪切位移的增加,剪切力不断增加且施加荷载越大

其增长程度越大,剪切力-剪切位移关系曲线无明显峰

值,说明该曲线为硬化型。在剪切初期,剪切力迅速增

加且荷载越大越明显,剪切力一剪切位移关系曲线的切

线斜率均大于1(除100 kPa 荷载条件下);随着剪切位移


的增大,剪切力继续不断增加,但剪切力一剪切位移关

系曲线逐渐平缓。以上 9 个试样中,2 a-M 的剪切力-

剪切位移关系曲线不同于其他试样。其最大剪切力

由图 4 可知,

成了较好的人渗路径。而2m堆积体稳定人渗率大于2a是因为2m堆积体是新形成的,其结构松散,大孔隙普遍存在。

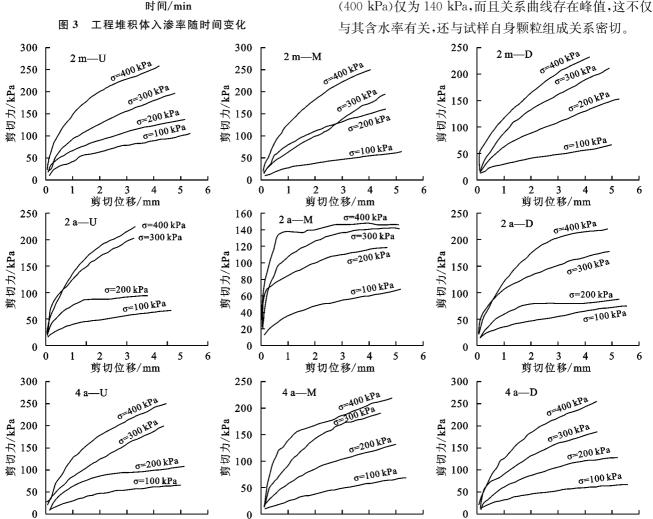


图 4 工程堆积体不同坡位的剪切力一剪位移关系曲线

剪切位移/mm

4 5

0

2.3.2 边坡抗剪强度特征 由表 5 可知,所测试样中粘聚力在 16.43~31.88 kPa 之间,内摩擦角在 2.23° ~41.69°之间;其中同一工程堆积体不同坡位的粘聚力较为接近(除 2 a 堆积体外),而内摩擦角的变化范围较大,这主要与所测样品的颗粒组成关系密切。对不同坡位的粘聚力和内摩擦角取平均值,分别得到 3 个堆积体的粘聚力和内摩擦角,其中粘聚力由大到小依次为 2 m(30.19 kPa) > 4 a(29.71 kPa) > 2 a(24.93 kPa),内摩擦角为 2 a(16.92°) >

剪切位移/mm

5

0

1

 $2 \text{ m}(10.08^{\circ}) > 4 \text{ a}(9.68^{\circ})$

2.3.3 堆积体边坡稳定性分析 采用 GEO-SLOPE 软件分别对以上 3 个堆积体的边坡稳定性进行分析,将堆积体重度、粘聚力和内摩擦角带入模型计算得到相应的安全系数(表 6)。

5

剪切位移/mm

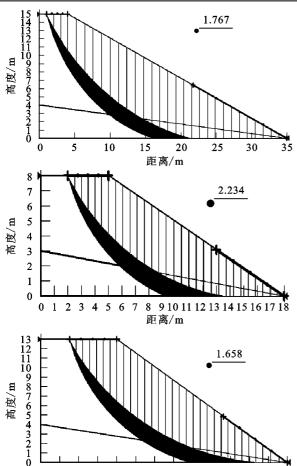

由表 6 可知,3 个堆积体的安全系数均大于 1.5, 在该情况下堆积体不会失稳。4 种计算方法的安全 系数较为接近,其大小依次为 Morgenstern-Pric > Bishop>Ordinary>Janbu,3 个堆积体安全系数由大 到小为 2 a > 2 m > 4 a。图 5 为 3 个堆积体不稳定滑动面,由图 5 可知,3 个堆积体稳定性由好到差依次为 2 a > 2 m > 4 a,以 2 a 的不稳定滑动面面积最小,4 a 堆积体滑动面面积最大。

表 5 工程堆积体力学性质指标

4户 □.	含水率/	重度/	粘聚力/	内摩
编号	%	$(kN \cdot m^{-3})$	kPa	擦角/(°)
2 m-U	9.61	14.9	28.78	22.86
2 m-M	7.69	15.3	31.70	2.30
2 m-D	7.86	14.6	30.08	5.07
平均值	8.39	14.9	30.19	10.08
2 a-U	14.63	14.8	30.23	6.15
2 a-M	19.05	16.1	16.43	41.69
2 a-D	15.01	16.4	28.14	2.91
平均值	16.23	15.8	24.93	16.92
4 a-U	11.22	15.0	31.88	9.47
4 a-M	9.43	12.5	25.97	17.34
4 a-D	12.04	12.0	31.28	2.23
平均值	10.90	13.2	29.71	9.68

表 6 工程堆积体不同计算方法的安全系数

编号			安全系数	
細ケ	Ordinary	Bishop	Janbu	Morgenstern-Price
2 m	1.711	1.750	1.659	1.767
2 a	2.188	2.233	2.143	2.234
4 a	1.638	1.655	1.612	1.658

10 12 14 16 18 20 22 24 26

距离/m 工程堆积体不稳定滑动面

图 5

3 讨论

工程堆积体作为一种典型的非均质多孔介质和 松散堆积体,是人为水土流失的主要来源之一。其结 构不同于一般的土质边坡,主要体现在堆积体的粒度 分布规律。相关研究表明,排土场散体岩块的粒度分 布具有分形特征,其分形维数是反映散体粒度组成及 相应力学性质的重要参数[11]。王光进等[12]研究认为 超高台阶排土场的重要特征是明显的粒径分级,而散体 岩土块度分布是影响超高台阶排土场稳定性和灾害防 治的关键因素。从本研究上看,工程堆积体具有良好的 分形结构,其粒度分布也符合重力分选的结果。但由于 紫色土具有高风化、强侵蚀等特点,使其粒度分布与其 他母岩形成的工程堆积体相比略有不同。朱波等[13] 通 过对紫色泥页岩的风化速度和侵蚀特征研究表明,紫色 泥页岩年风化成土速率为 $15~800\sim25~500~t/km^2$, 侵蚀 模数为 12 380~23 640 t/(km²·a),这就使其不断 处于风化—侵蚀—母岩裸露的循环过程中。针对紫 色土母岩的风化特点,今后应加强新形成的工程堆积 体的工程措施和植物措施,以降低堆积体在降雨和径 流冲刷的条件下水土流失及滑坡等灾害的发生。

降雨入渗是导致工程堆积体边坡失稳的主要因素。研究表明,土石混合体的渗透特性与颗粒的大小、孔隙比及颗粒形状关系密切[10]。从本研究3个工程堆积体的入渗特征来看,入渗率随入渗时间而减小,且由于堆积体结构松散、大孔隙发达等特点,使其具有较高的入渗率。相关研究表明,随着入渗过程的发生,不仅土体含水量不断增加,粘聚力降低,而且还增加了土体自重,加大了土体边坡发生滑坡、泥石流的危险性[14]。赵星宇等[15]对露天煤矿采掘场边坡在暴雨条件下的稳定性进行了研究。本研究表明,3个堆积体均处于稳定状态,其安全系数大于1.2。但本文并未考虑降雨条件下堆积体的稳定性,今后应加强这方面的研究,以期为重庆市工程堆积体水土流失防治、边坡稳定性分析提供科学依据。

4 结论

(1)不同堆放时间的工程堆积体粒度分布不均匀且差异较大,离散系数在 $0.81\sim1.24$ 之间。各工程堆积体粒度分布主要集中在 $2\sim20$ mm,其含量在 $45.61\%\sim73.79\%$ 之间。工程堆积体不同坡位粒度分布规律存在差异性,粒组频率分布具有多峰性。

(2)各工程堆积体天然密度在1.35~1.91 g/cm³之间;饱和含水量表现为下坡位>中坡位>上坡位,其最大值为42.31%,最小值为23.36%。人渗率随时间变化呈快速减小、缓慢减小、稳定人渗3个阶段,2 m,2 a 和 4 a 堆积体稳定人渗率分别为4.53,3.17,7.02 mm/min。

(3)不同堆放时间工程堆积体安全系数均大于1.5;剪切力随剪切位移的增加而增大,各工程堆积体粘聚力和内摩擦角在16.43~31.88 kPa和2.23°~41.69°之间。应用GEO-SLOPE软件不同方法计算得到的安全系数较为接近,不同堆放时间的工程堆积体稳定性大小表现为2a>2m>4a。

参考文献:

- [1] 王文龙,李占斌,李鹏,等.神府东胜煤田原生地面放水冲刷试验研究[J].农业工程学报,2005,21(13):59-62.
- [2] 陈奇伯,黎建强,王克勤,等.水电站弃渣场岩土侵蚀人工模拟降雨试验研究[J].水土保持学报,2008,22(5):1-4,10.
- [3] 史东梅. 高速公路建设中侵蚀环境及水土流失特征的研究[J]. 水土保持学报,2006,20(2):5-9.
- [4] 冷疏影,冯仁国,李锐,等. 土壤侵蚀与水土保持科学重点研究领域与问题[J]. 水土保持学报,2004,18(1):1-6.
- [5] 胡明鉴,汪稔. 蒋家沟流域松散砾石土斜坡滑坡频发原 因与试验模拟[J]. 岩石力学与工程学报,2002,21(12): 1831-1834.
- [6] 刘建伟,史东梅,马小刚,等. 弃渣场边坡稳定性特征分析[J]. 水土保持学报,2007,21(5);192-195.

(上接第108页)

- [8] Ma D, Shao M. Simulating infiltration into stony soils with a dual-porosity model[J]. European Journal of Soil Science, 2008, 59(5):950-959.
- [9] 李燕,刘吉振,魏朝富,等.砾石对土壤水分入渗(扩散)的影响研究[J].土壤学报,2011,48(2);435-439.
- [10] 朱元骏,邵明安.不同碎石含量的土壤降雨入渗和产沙过程初步研究[J].农业工程学报,2006,22(2):64-67.
- [11] 时忠杰,王彦辉,熊伟,等.六盘山典型植被类型土壤中石砾对大孔隙形成的影响[J].山地学报,2007,25(5):541-547.
- [12] Jarvis N J. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality[J]. European Journal of Soil Science, 2007, 58(3):523-546.
- [13] Wilson G V, Jardine P M, Luxmoore R J, et al. Hydrology of a forested hillslope during storm events [J]. Geoderma, 1990,46(1):119-138.
- [14] Alaoui A, Helbling A. Evaluation of soil compaction using hydrodynamic water content variation: Comparison between compacted and non-compacted soil [J]. Geoderma, 2006, 134(1/2): 97-108.
- [15] Alaoui A, Goetz B. Dye tracer and infiltration experiments to investigate macropore flow [J]. Geoderma,

- [7] 张家铭,付金丹,刘浩.基于改进正交设计的山区弃土场边 坡稳定性敏感分析[J].科技导报,2012,30(17);38-42.
- [8] 王礼先.水土保持工程学[M].北京:中国林业出版社,2003.
- [9] 国家质量技术监督局、中华人民共和国建设部. GB/T 50123—1999 土工试验方法标准[S]. 北京:中国计划出版社,1999.
- [10] Millan H, Gonzalez P M, Aguilar M, et al. On the fractal scaling of soil data Particle-size distributions [J]. Geoderma, 2003, 117(1/2):117-128.
- [11] 谢学斌,潘长良. 排土场散体岩石粒度分布与剪切强度的分形特征[J]. 岩土力学,2004,25(2):287-291.
- [12] 王光进,杨春和,孔祥云,等.超高台阶排土场散体块度 分布规律及抗剪强度参数的研究[J].岩土力学,2012, 33(10);3087-3092,3161.
- [13] 朱波,莫斌,汪涛.紫色丘陵区工程建设松散堆积物的侵蚀研究[J].水土保持学报,2005,19(4):193-195.
- [14] 徐扬,高谦,李欣,等. 土石混合体渗透性现场试坑试验研究[J]. 岩土力学,2009,30(3):855-858.
- [15] 赵星宇,王卫,戴雄辉,等. SLOPE/W 在某露天煤矿采掘场边坡稳定性分析中的应用[J]. 水利与建筑工程学报,2013,11(1):187-190.
 - 2008,144(1):279-286.
- [16] 魏虎伟,程金花,张洪江,等.四面山2种林地大孔隙特征与优先流关系研究[J].水土保持学报,2014,28(4): 263-268.
- [17] 时忠杰,王彦辉,徐丽宏,等. 六盘山森林土壤的石砾对土壤大孔隙特征及出流速率的影响[J]. 生态学报,2008,28(10):4929-4939.
- [18] 骆紫藤,牛健植,孟晨,等. 华北土石山区森林土壤中石砾分布特征对土壤大孔隙及导水性质的影响[J]. 水土保持学报,2016,30(3):305-308.
- [19] 丁树文,蔡崇法,黄丽,等. 三峡库区秭归盆地岩性构造 对坡地紫色土某些特性影响[J]. 华中农业大学学报, 2000,19(2):129-133.
- [20] Weiler M, Flühler H. Inferring flow types from dye patterns in macroporous soils[J]. Geoderma, 2004,120 (1):137-153.
- [21] 赵其国. 土壤理化分析[M]. 上海: 上海科学技术出版 社,1978:5-12.
- [22] 石辉,陈凤琴,刘世荣.岷江上游森林土壤大孔隙特征 及其对水分出流速率的影响[J].生态学报,2005,25 (3):507-512.
- [23] 时忠杰,王彦辉,徐丽宏,等. 六盘山典型植被下土壤大 孔隙特征[J]. 应用生态学报,2007,18(12);2675-2680.