Response of Soil detachment capacity of Citrus Orchard Covered with Green Fertilizer to Concentrated Hydrodynamic Parameters
DOI:
Author:
Affiliation:

Southwestern University of resources and environment

Clc Number:

S715.1;S157.1

Fund Project:

Chongqing Research Program of Basic Research and Frontier Technology(No. CSTB2023NSCQ-MSX0117)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective]To explore the relationship between the soil detachment capacity of green manure cover and the hydraulic characteristics of concentrated water flow in typical sloping orange orchards in the Three Gorges Reservoir area, so as to provide data support for further clarifying the hydraulic characteristics of land upflow in typical sloping orange orchards during soil erosion. [Methods]Through the concentrated flow erosion test, the soil detachment capacity between bare slope and green manure (Trifolium repens, Poa annuaL, and Vicia sepium L) under the gradient hydrodynamic conditions of different slopes (10°~25°) and flow (18~126L/min) was analyzed, and the soil detachment capacity and water flow dynamic parameters (water flow shear force, water flow power), flow pattern parameters (Reynolds number, Freud number), and resistance parameters (Darcy-Weisbach resistance coefficient, Manning coefficient) and establish a corresponding mathematical model. [Results]The results showed that green manure mulching could significantly reduce soil soil detachment ability (P < 0.01). The soil detachment capacity of bare slope and green manure cover was positively correlated with the parameters of water flow dynamics and flow pattern (P < 0.05), and negatively correlated with the parameters of water flow resistance (P < 0.05). The prediction effect of water flow shear force on soil detachment capacity is better than that of water flow power. The Reynolds number predicts soil detachment capacity better than the Freud number. The prediction of the Darcy-Weisbach drag coefficient is better than that of the Manning coefficient. Overall, the shear force of water flow had the best effect in predicting soil detachment ability and had the highest accuracy (R2=0.957, NSE=0.963).

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 04,2024
  • Revised:March 18,2024
  • Adopted:March 18,2024
  • Online: April 29,2024
  • Published: