DOI: 10.13870/j.cnki.stbcxb.2025.05.005

CSTR: 32310.14.stbcxb.2025.05.005

杜晨璐,却淑涵,焦硕,等。黄芩渣有机肥对沙地连作马铃薯农田土壤细菌多样性与功能的影响[J].水土保持学报,2025,39(5):400-410.

DU Chenlu, QUE Shuhan, JIAO Shuo, et al. Effects of Scutellaria residue organic fertilizer on soil bacterial diversity and function in potato fields under continuous cropping on sandy land [J]. Journal of Soil and Water Conservation, 2025, 39(5):400-410.

黄芩渣有机肥对沙地连作马铃薯农田 土壤细菌多样性与功能的影响

杜晨璐1, 却淑涵1, 焦 硕2, 韦革宏2, 王红雷1,3

(1. 西北农林科技大学水土保持科学与工程学院,陕西杨凌712100; 2. 西北农林科技大学生命科学学院, 作物抗逆与高效牛产全国重点实验室,陕西农业与环境微牛物重点实验室,陕西 杨凌 712100;

3. 中国科学院水利部水土保持研究所,陕西 杨凌 712100)

摘 要:[目的]探究黄芩渣有机肥对马铃薯连作土壤基础特性和微生物群落多样性与功能的影响,可为黄 芩渣资源化利用和连作马铃薯土壤改良提供理论参考。[方法]以大宗药材黄芩渣和羊粪(质量比为1:3) 为基料,分别添加3%、5%和10%功能菌剂后通过发酵制备得到3种有机肥体系(T1、T2、T3),有机肥施入 土壤后相应处理分别为F1、F2、F3。结合田间原位控制试验,解析3种黄芩渣有机肥体系对连作马铃薯农田 土壤化学特性、细菌多样性和功能的影响。[结果]1)与对照组相比,F1~F3处理均能显著提高成熟期土壤 速效磷(AP)和速效钾(AK)质量分数,分别提高8.12~12.00、65.63~88.36 mg/kg。2)F1和F2处理均提高 马铃薯薯表土细菌菌群总数量,提高幅度分别为60.96%和23.19%,且富集鞘氨醇单胞菌属、假黄色单胞菌 属和黄杆菌属等有益菌属。3)LEfSe分析结果显示,施入黄芩渣有机肥后抑制土壤中果胶杆菌属等致病细 菌的绝对丰度,富集更多绝对丰度显著高的促进土壤元素循环的有益细菌群落。4)F1~F3处理均能改变土 壤细菌介导的碳氮循环功能,提高土壤菌群对有机质的分解潜力和土壤氮素有效性。[结论]施用黄芩渣 有机肥能够提高土壤速效磷钾养分质量分数、有益菌属丰度和细菌功能活性,T1处理为最佳有机肥体系。

关键词:中药渣有机肥;连作土壤;土壤微生物;细菌多样性与功能

中图分类号:S154.3

文献标识码:A

文章编号:1009-2242(2025)05-0400-11

Effects of Scutellaria Residue Organic Fertilizer on Soil Bacterial Diversity and Function in Potato Fields under Continuous Cropping on Sandy Land

DU Chenlu¹, QUE Shuhan¹, JIAO Shuo², WEI Gehong², WANG Honglei^{1,3}

(1. College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China;

2. College of Life Sciences, Northwest A&F University, State Key Laboratory for Crop Stress Resistance and High-

Efficiency Production, Shaanxi Key Laboratory of Agriculture and Environmental Microbiology, Yangling,

Shaanxi 712100, China; 3. Institute of Soil and Water Conservation, Chinese Academy of

Sciences, Ministry of Water Resources, Yangling, Shaanxi 712100, China)

Abstract: [Objective] This study aimed to explore the effects of Scutellaria organic fertilizer on the basic characteristics and microbial community diversity and function of soil under continuous cropping of potato can provide theoretical references for the resource utilization of Scutellaria residue and the improvement of continuous potato cropping soils. [Methods] Using the residue of the medicinal herb Scutellaria baicalensis and sheep manure (with a mass ratio of 1:3) as the base materials, three organic fertilizer systems (labeled as T1, T2, and T3 in sequence) were prepared by fermentation after adding 3%, 5%, and 10% functional microbial agents respectively. The corresponding treatments after the organic fertilizer was applied to the soil were labeled as F1,

收稿日期 · 2025-01-04

修回日期:2025-02-24

录用日期:2025-03-05

网络首发日期(www.cnki.net):2025-06-06

资助项目:国家重点研发计划青年科学家项目(2021YFD1900500)

第一作者: 杜晨璐(2002—),女,硕士研究生,主要从事健康土壤培育与地力提升研究。 E-mail: dcl525600@163.com

F2, and F3, respectively. The effects of the three *Scutellaria* residue organic fertilizer systems on soil chemical properties, bacterial diversity and function of continuous potato cropping fields were analyzed with the in-situ control trial. [Results] 1) Compared with the control group, all three *Scutellaria* residue organic fertilizer systems significantly increased the available phosphorus and available potassium contents of the soil at the maturity stage, with increases of 8.12~12.00 mg/kg and 65.63~88.36 mg/kg, respectively. 2) The total population of bacterial flora in potato surface soil was increased by 60.96% and 23.19% in F1 and F2 treatments, and enriched with beneficial genera such as *Sphingomonas*, *Pseudoxanthomonas*, and *Flavobacterium*. 3) LEfSe analysis showed that the application of *Scutellaria* residue organic fertilizers suppressed the absolute abundance of pathogenic bacteria such as *Pectobacterium* in the soil, and enriched more beneficial bacterial communities with significantly high absolute abundance that promote soil element cycling. 4) The three kinds of *Scutellaria* residue organic fertilizer systems altered the function of soil bacterial mediated carbon and nitrogen cycling, and increased the organic matter decomposition potential of soil flora and soil nitrogen availability. [Conclusion] The application of *Scutellaria* residue organic fertilizer can improve soil available phosphorus and potassium nutrient content, the abundance of beneficial bacterial genera, and bacterial functional activity. The system T1 is the best *Scutellaria* residue organic fertilizer system.

Keywords: herb residue organic fertilizer; continuous cropping soil; soil microorganisms; bacterial diversity and function

Received: 2025-01-04 **Revised**: 2025-02-24 **Accepted**: 2025-03-05 **Online**(www.cnki.net): 2025-06-06

毛乌素沙地与黄土高原过渡地带是中国马铃薯 五大优生区和高产区之一。受长期连作和高密度影 响,沙地马铃薯农田土壤有机质和微生物群落数量 与多样性衰减问题日益凸显,成为制约马铃薯产业 持续发展的障碍因素[1]。施用生物有机肥是提升土 壤肥力和微生物多样性与功能的重要途径,而与传 统有机肥相比,以中药材残渣为基料制备的新型有 机肥成为土壤改良的重要措施。李静娟等[2]研究发 现,用蚯蚓处理中药废渣后产生的中药渣蚓粪可提 高土壤有机质、全氮和速效钾质量分数;制备以鸡粪 与猪粪为基料的传统有机肥过程中添加一定比例中 药材残渣,显著降低有机肥中抗生素抗性基因 (ARGs) 丰度, 进而减少ARGs 在生态系统中的传播 与扩散[3];而将中药材残渣与厨余废弃物混合制备中 药渣有机肥,可通过诱导具有拮抗能力的细菌和真 菌菌株,提高堆肥对番茄早疫病菌(Alternaria solani) 及尖孢镰刀菌(Fusarium oxysporum)的抗 性[4]。中药材经炮制后的残渣被认为是一种安全、无 公害的优质有机肥原料[5]。然而,中药材残渣中除常 规的碳氮磷等基础组分外,药用成分也是影响土壤 微生物的重要因素,而沙地农田存在土壤贫瘠且微 生物多样性偏低的问题。在此背景下,中药渣有机 肥对沙地土壤微生物群落多样性与功能的影响等科 学问题尚不清晰。

有机肥协同功能微生物是提高土壤中微生物丰度,并增强其功能活性的有效措施,已成为作物连作

障碍防治的研究热点^[6-7]。有机肥配施具有生物防治功能的微生物可以提高植物对病原体的抵抗力^[8],而将中药渣有机肥与生物菌肥联合施用,显著促进土壤中团粒结构的形成,加速土壤熟化进程^[9]。DING等^[10]研究表明,淀粉芽孢杆菌、枯草芽孢杆菌及其衍生生物有机肥降低马铃薯细菌性枯萎病发病率,并提高马铃薯产量,且生物有机肥施用显著增加根际土壤拮抗菌、细菌和放线菌数量,减少土壤真菌数量;也有研究^[8]表明,富含解淀粉芽孢杆菌的生物有机肥会增强土著假单胞菌属的富集,进而显著抑制香蕉枯萎病的发病率。目前关于中药渣有机肥的研究侧重其对作物生长、土壤化学性状及土壤酶活性等的影响,其对贫瘠与连作沙地马铃薯土壤微生物群落多样性与功能活性的影响尚未有清晰的认识。

黄芩因良好的抗炎抗菌功效在中国广泛使用,其主要成分为黄酮类化合物、萜类化合物、挥发油和多糖^[11]。黄酮类化合物对土传病害的细菌、真菌均有一定的抑制能力,且多糖类物质可被微生物利用,加快有机物的分解,从而提高堆肥质量并缩短堆肥周期。因此,本研究选用大宗中药材黄芩残渣为基料,辅以不同比例的枯草芽孢杆菌和地衣芽孢杆菌菌剂制备而成的黄芩渣有机肥,在探究黄芩渣有机肥对沙地马铃薯农田土壤的化学性状的基础上,定量解析其对沙地土壤细菌群落多样性与潜在功能特性的影响,以期为利用中药渣有机肥调控沙地马铃薯农田土壤微生物多样性与功能提供科学依据。

1 材料与方法

1.1 研究区概况

研究区位于陕西省神木市现代特色农业示范园 $(109^{\circ}53'26''N,39^{\circ}05'52''E)$,位于陕西省北部,毛乌素沙漠东部边缘,气候类型为温带半干旱大陆性季风气候,年平均气温为 8.6° 、四季冷暖分明,昼夜温差大,年平均降水量 415.6 mm,其中 70% 以上降水发生在 6-9 月,区域降水历时短、雨量大,土壤类型为沙质黄土,土壤透水性强,地表蒸发强度大。春冬季以西北风为主,夏季以东南风为主,年平均风速 $1.9\sim2.6$ m/s,年日照时间 $2674\sim3023$ h^[12]。

1.2 供试材料

供试马铃薯品种为"荷兰 V7",供试土壤为毛乌素沙地马铃薯田连作 3 a 土壤,供试土壤基本理化性质为:pH 8.66,电导率96.5 μS/cm,硝态氮 18.33 mg/kg,

铵态氮 2.96 mg/kg,速效磷 25.19 mg/kg,速效钾 237.76 mg/kg,有机质 2.51 g/kg。

供试有机肥为实验室好氧堆肥制备3种黄芩渣有机肥,其成分与基本理化性质见表1。黄芩渣有机肥原料为黄芩中药渣与新鲜羊粪,经晾干、粉碎后按一定比例混合,辅以质量比为1:1的活化枯草芽孢杆菌和地衣芽孢杆菌加速堆肥腐熟进程。堆肥容器为40 L的泡沫箱,各处理堆料总质量为9 kg,总周期49 d,堆肥进程中保持堆料含水率为60%。堆肥过程中第1周每3 d进行1次翻堆,后每7 d进行1次翻堆,翻堆时将含水率补充至初始含水率。黄芩中药渣由神木现代特色农业示范园提供,新鲜羊粪由甘肃德晟陈农产科技有限责任公司提供,枯草芽孢杆菌及地衣芽孢杆菌菌剂购自江苏绿科生物技术有限公司,有效活菌数为1.0×10° CFU/g。

表 1 供试黄芩渣有机肥成分及基本理化性质

Table 1 The composition and basic physicochemical properties of Scutellaria residue organic fertilizer

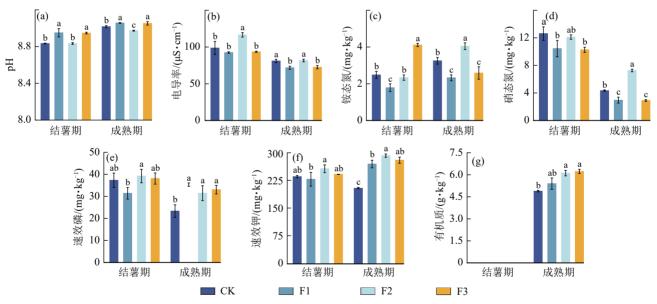
处理	黄芩渣添加量/ %	羊粪添加量/	菌剂添加量/	рН	EC/ (mS·cm ⁻¹)	$TN/(g \cdot kg^{-1})$	$P_2O_5/$ $(g \cdot kg^{-1})$	$K_2O/$ $(g \cdot kg^{-1})$	有机质/ %
T1	25.00	75.00	3.00	8.93	4.61	18.58	6.47	28.05	54.46
T2	25.00	75.00	5.00	8.92	3.65	16.43	6.21	24.54	46.98
Т3	25.00	75.00	10.00	8.76	3.49	14.55	5.53	22.59	43.03

1.3 试验设计

试验共设计 CK(无任何施肥)、F1~F3(施用黄芩渣有机肥 T1~T3) 4个处理组,采用种植槽(长×宽×高为 40 cm×30 cm×40 cm)进行控制试验,每个种植槽中装入 35 kg 连作土壤,按土壤质量的 0.5%分别加入 3种黄芩渣有机肥,并混合均匀。将催芽后长势接近的 3株马铃薯幼苗移栽至种植槽中,考虑到种植槽的装土容量,每个处理组设置 2个种植槽,并埋入农田当中,上缘高出地面 10 cm,避免农田土壤进入槽体。试验开始后不再施入其他肥料,马铃薯幼苗萎蔫时各处理组浇入等量的水。

1.4 样品的采集与指标测定

1.4.1 样品采集及方法 由于幼嫩马铃薯表皮更容易被病原菌侵染,而马铃薯成熟期土壤细菌群落更趋于稳定^[13],故设计2次采样。于2023年7月马铃薯结薯期进行第1次采样,于2023年9月马铃薯成熟期进行第2次采样,2次采样均采集马铃薯表土与马铃薯块附近的根区土。每个处理采集3份土壤样品,土壤样品充分混合后分为2部分,根区土在阴凉处风干后进行土壤化学性质分析,表土储存在-80℃冰箱内供后续进行16S rRNA基因测序。


1.4.2 指标测定 土壤化学性质测定: NO₃-N、NH₄+N 经 KCl 浸提后用流动分析仪测定, AP 经

 $NaHCO_3$ 浸提后用流动分析仪测定, AK 经 NH_4OAc 浸提后用火焰光度计测定, SOM 通过重铬酸钾容重 法-外加热法测定。pH使用 PHSJ-3F pH 计测定(土水比为 1: 2.5), EC 使用 DDSJ-308F 型电导率仪测定(土水比为 1:5)。

马铃薯表土细菌群落的绝对数量和物种构成测 定:委托上海天昊生物科技有限公司进行PCR扩增 和绝对定量高通量测序。使用引物 341F(5'-CCTAC GGGNGGCWGCAG-3')和805R(5'-GACTACHV GGGTATCTAATCC-3')对16SrRNA基因的V3-V4区进行扩增,每个样本添加合适比例的 spike-in 内 标 DNA,同时设置阳性对照样本,并构建文库。通过 Illumina NovaSeq平台进行测序分析,使用QIIME2 软件的 cutadapt 插件去除可能包含的 adapter 序列和 引物后,统计原始数据质量,并使用DADA2插件对 数据进行质量过滤,降噪,拼接及去嵌合体。根据每 个样本 spike-in 序列制作标准曲线方程,结合测序模 板 DNA 量、样品 DNA 提取量及提取 DNA 所用样品 量计算单位样本中物种拷贝数(copies/g)。计算公 式为:单位样本中ASV绝对拷贝数=(ASV绝对拷 贝数×样品DNA提取量)/测序模板DNA量/提取 DNA 所用样品量。使用软件 rdp-classifier(v2.14版) 对每个ASV进行分类注释,根据注释结果从属水平 开始对每个ASV的基因拷贝数进行估算和矫正,将 每条 ASV 代表序列与数据库进行比对从而完成 ASV的分类学注释。使用QIIME2软件对ASV序列进行物种注释(置信度16S和18S:0.8, ITS:0.6),利用FAPROTAX数据库对样本的生物地球化学循环过程进行功能注释预测。

1.5 数据处理与统计分析

试验数据经 Excel 2021软件进行预处理后,利用 SPSS 26.0软件进行统计分析,ANOVA单因素方差分析满足齐性的数据通过邓肯多重检验其显著性,不满足齐性的数据通过邓肯多重检验其显著性,不满足齐性的数据通过 Kruskal-Wallis 单因素 ANOVA 检验其显著性,显著性检验时均设定 p<0.05。运用 Origin 2021软件绘制土壤化学性质的柱状图和土壤碳、氮循环功能绝对丰度箱线图。在线进行 LEfSe 分析 (http://cloud. geneskybiotech.com)。运用 R 4.3.3的 vegan、ggplot2、tidyverse、psych、pheatmap、plyr对 ASV 丰度表进一步分析并绘制基于Bray-curtis距离的主坐标分析(PCoA)图、细菌门水平Top15和属水平Top10细菌群落相对丰度和绝对丰度柱状堆积图、属水平Top10细菌群落与土壤化学性质间的冗余分析(RDA)图和土壤碳、氮循环功能基因绝对丰度与土壤化学性质间的互作关系热图。

注:图柱上方不同小写字母表示不同处理间存在显著差异(p<0.05)。

图 1 各处理结薯期及成熟期根区土壤化学性质变化

Fig. 1 Changes in soil chemical properties in the root zone during the tuber formation and maturity stages under different treatments

2.2 成熟期薯表土壤细菌群落多样性

各处理成熟期薯表土壤细菌群落α多样性见表2。F2、F3处理的土壤细菌群落Shannon指数显著下降,对细菌群落Chao1指数的影响不显著,而F1处理显著降低土壤细菌群落的丰富度和多样性(p<0.05)。

对马铃薯成熟期各处理的细菌群落在ASV水平上进行基于Bray-Curtis距离算法的主坐标分析(principal coordinate analysis, PCoA)。由图2可知, PCoA1和PCoA2共解释总体变化的54.96%,各处理样本点距离较远,各外源菌剂添加量处理间表现出较大差异。

2 结果与分析

2.1 黄芩渣有机肥对根区土壤化学性质的影响

不同黄芩渣有机肥对马铃薯连作土壤的化学性 质的影响存在显著差异(图1)。随着马铃薯生长土 壤pH整体呈上升趋势,土壤电导率(EC)整体呈下降 趋势。黄芩渣有机肥的施入对各处理的pH无显著 影响;与F1、F3处理相比,F2处理成熟期土壤EC下 降幅度最大,为34.80 μS/cm;与CK相比,F2处理显 著提高成熟期土壤硝态氮质量分数,F1、F3处理在2 个时期均显著降低土壤硝态氮质量分数(p<0.05); F1处理显著降低2个时期土壤中铵态氮质量分数 (p<0.05);结薯期F2处理土壤铵态氮质量分数无显 著差异,成熟期显著高于CK:F3处理显著提高结薯 期土壤铵态氮质量分数,而在成熟期其质量分数显 著降低(p<0.05);随马铃薯生长,对照组(CK)土壤 中AP、AK质量分数呈下降趋势;与CK相比,3个处 理均能显著提高成熟期土壤的AP、AK质量分数 (p<0.05),且成熟期土壤AK质量分数较结薯期均 有不同程度的提高;F2和F3处理显著提高成熟期 SOM质量分数,F1与CK无显著差异。

± 3	成 敦 邯 夂 孙 珥 葽 丰 十 憧 细 茵 畔 莈 ~ 夂 样!	h4-

Table 2 Alpha diversity of potato surface soil bacterial communities in each treatment at the maturity stage

处理	Chao1	ACE	Shannon	Simpson
CK	2 432.53a	2 423.75a	6.49a	5.28×10^{-3} c
F1	2 168.48b	2 160.00b	6.28c	7.50×10^{-3} a
F2	2 371.68a	2 358.79a	6.37b	6.60×10^{-3} b
F3	2 397.47a	2 386.94a	6.38b	6.65×10^{-3} b

注:表中同列不同字母表示不同处理差异显著(p<0.05)。

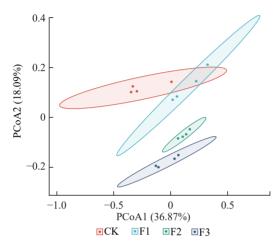


图 2 成熟期各处理薯表土壤 PCoA 分析

Fig. 2 PCoA analysis of potato surface soil in each treatment at the maturity stage

2.3 成熟期薯表土壤细菌群落组成

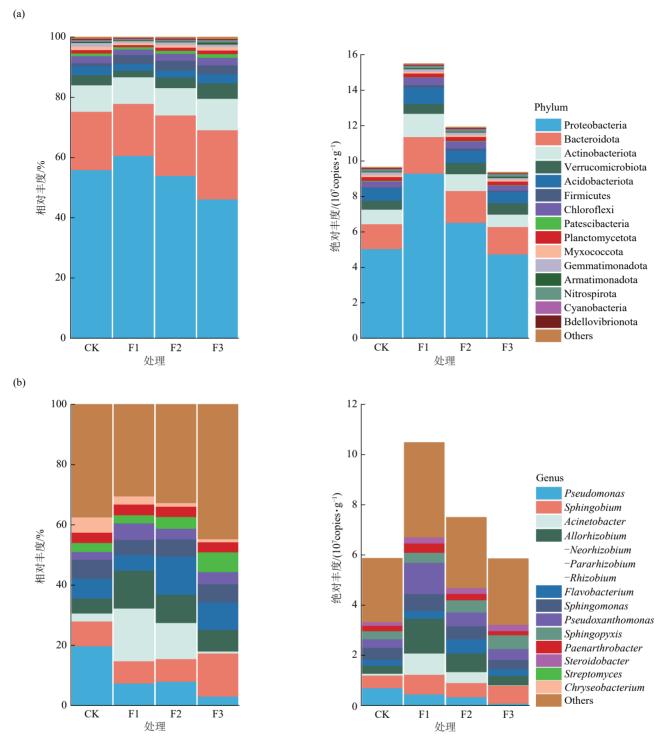
图 3 为基于门和属 2 个水平成熟期薯表土细菌群 落相对丰度和绝对丰度的结构组成。图 3a 为前 15 个 优势菌门分类结果,试验共测得39个细菌门。变形 菌门(Proteobacteria)(相对丰度53.99%~60.63%,绝 对 丰 度 $4.74 \times 10^7 \sim 9.31 \times 10^7$ copies/g)、拟 杆 菌 门 (Bacteroidota)(相对丰度17.26%~22.96%,绝对丰 度 1.40×10⁷~2.06×10⁷ copies/g)、放线菌门 (Actinobacteriota)(相对丰度8.78%~10.45%,绝对 丰度 7.03×10⁶~1.32×10⁷ copies/g)、酸杆菌门 (Acidobacteriota)(相对丰度 2.29%~2.98%,绝对丰 度 6.35×10⁶~9.15×10⁶ copies/g) 、厚壁菌门 (Firmicutes)(相对丰度 0.99%~3.26%,绝对丰度 2.94×10⁵~1.34×10⁶ copies/g)是各处理共同的优势 菌门。在已识别的细菌门中,F1、F2处理可以显著提 高表土细菌门水平总丰度,其提高幅度分别为 60.47%、23.47%。F1处理中拟杆菌门和酸杆菌门的 相对丰度与CK相比未见增加,但绝对丰度分别提高 46.99%、27.68%。F1和F2处理土壤中厚壁菌门的 绝对丰度显著高于CK(p<0.05),其余细菌门水平的 绝对丰度各处理间无显著差异。

图 3b 为前 10 个优势菌属分类结果,试验共测得 693 个细菌属,不同处理的土壤细菌群落在属水平有

相似分类,但相对丰度数据结果和绝对丰度数据结 果显示的优势菌属存在差异。假单胞菌属(Pseudomonas)(相对丰度1.88%~13.04%,绝对丰度3.41× 106~8.45×106 copies/g)、鞘脂菌属(Sphingobium)(相 对丰度4.86%~8.76%,绝对丰度5.02×106~7.84×106 copies/g)、不动杆菌属(Acinetobacter)(相对丰度 $0.40\% \sim 12.16\%$, 绝对丰度 $1.45 \times 10^5 \sim 8.48 \times 10^6$ copies/g) , Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium(相对丰度 3.25%~8.74%, 绝对丰度 3.18×10⁶~1.38×10⁷ copies/g)是各处理共同的优势 菌属。在已识别的细菌属中,F1和F2处理可以显著 提高表土细菌属水平总丰度,其提高幅度分别为 78.65%、27.81%。绝对丰度数据中,施入黄芩渣有机 肥后F1和F2处理鞘氨醇单胞菌属(Sphingomonas)的 绝对丰度有所增加,但该属的相对丰度较CK有所降 低。施入3种黄芩渣有机肥均提高鞘脂菌属(Sphingobium)的绝对丰度;F1处理的Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、假黄色单胞菌属 (Pseudoxanthomonas)和 Steroidobacter 的绝对丰度 显著高于CK(p<0.05),链霉菌属(Streptomyces)相对 丰度低于CK;F2处理的黄杆菌属(Flavobacterium) 绝对丰度显著高于CK、F1和F3处理(p < 0.05)。

2.4 成熟期薯表细菌群落 LEfSe 分析

使用LEfSe筛选出 4个处理中绝对丰度差异显著的细菌群落(图 4a),并采用LDA来估算每个物种丰度对差异效果影响的大小。图 4b为LDA阈值为 3的条件下,有 25个存在显著差异土壤细菌群落。CK显著富集的土壤细菌群落有肠杆菌科(Enterobacteriaceae)、果胶杆菌属(Pectobacterium)和草酸杆菌科(Oxalobacteraceae)等;F1显著富集的土壤细菌群落有不动杆菌属、柄杆菌属(Caulobacter)和马赛菌属(Massilia)等;F2显著富集的土壤细菌群落有氢噬胞菌属(Hydrogenophaga)、气单胞菌科(Aeromonadaceae)和副球菌属(Paracoccus)等;F3显著富集的土壤细菌群落有 Sphingopyxis属、莫拉菌科(Moraxellaceae)和芽孢杆菌科(Bacillaceae)等。



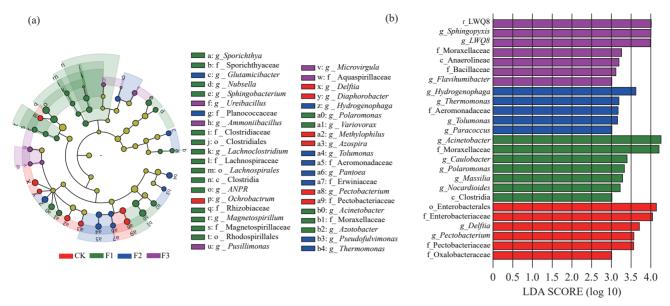
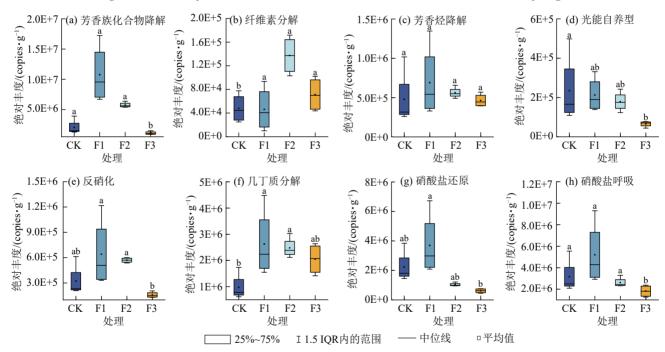

图 3 成熟期各处理门水平及属水平薯表土细菌群落组成

Fig. 3 Bacterial community composition at the phylum and genus levels in potato surface soil in each treatment at the maturity stage

2.5 细菌菌群功能预测

为探究黄芩渣有机肥施用对马铃薯表土细菌群落潜在功能的影响,基于FAPROTAX数据库对细菌菌群介导的碳氮循环功能进行预测,注释到57种生态功能。通过单因素方差分析和Kruskal-Wallis检验,筛选出显著变化的3个与碳循环相关,4个与氮循环相关的生态功能(p<0.05)(图5)。在碳循环过程


中,F3处理显著降低芳香族化合物降解和光能自养型细菌绝对丰度;施用黄芩渣有机肥均显著提高纤维素分解细菌绝对丰度(p<0.05);F1和F2处理提高芳香族烃降解细菌绝对丰度。在氮循环过程中,F3处理显著降低反硝化、硝酸盐还原和硝酸盐呼吸细菌绝对丰度(p<0.05);F1和F2处理显著提高几丁质分解细菌绝对丰度(p<0.05)。

注:图 a 为 LEfSe 进化分支图,不同颜色表示不同分组,节点直径大小与丰度大小呈正比;每层节点由内向外分别表示门、纲、目、科、属;图 b 为 LDA 条形图,不同颜色的条形表示不同组别中 LDA score(log 10)>3且在该组中丰度显著高的差异物种,条形图的长短代表的是 LDA score 值大小。

图 4 成熟期各处理土壤细菌群落的 LEfSe 分析

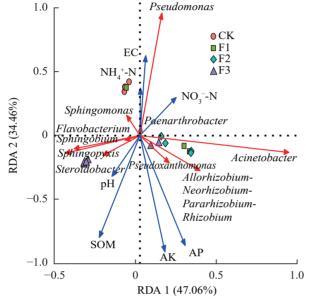
Fig. 4 LEfSe analysis of soil bacterial communities in each treatment at the maturity stage

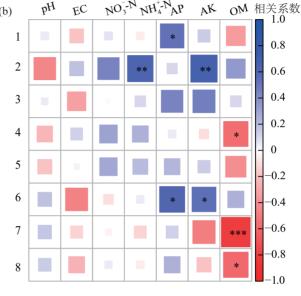
注:图中不同小写字母表示不同处理间存在显著差异(p<0.05)。

图 5 基于 FAPROTAX 功能预测下各处理薯表土碳、氮循环功能绝对丰度

Fig. 5 Absolute abundance of carbon and nitrogen cycling functions in potato surface soil in each treatment based on FAPROTAX functional prediction

2.6 成熟期优势物种及潜在生态功能与环境因子的 关系


为探究成熟期环境因子对土壤细菌属水平优势物种的影响,对其进行冗余分析。RDA1轴和RDA2轴的解释度分别为47.06%和34.46%,累计解释度为81.52%(图6a)。各环境因子对土壤细菌属水平优势物种影响程度由大到小排序为AP>AK>SOM>EC>


 $NO_3^--N>pH>NH_4^+-N$ 。假单胞菌属(Pseudomonas)、鞘 氨 醇 单 胞 菌 属 (Sphingomonas) 和 类 节 杆 菌 属 (Paenarthrobacter) 与 EC、 NH_4^+-N 呈 显 著 正 相 关 (p<0.01),与 AP、AK 和 SOM 呈 显 著 负 相 关 (p<0.01);鞘 脂 菌 属 (Sphingobium)、Sphingopyxis、Steroidobacter 属 和 黄 杆 菌 属 (Flavobacterium) 与 pH 和 SOM 呈 显 著 正 相 关 (p<0.01),与 EC、 NH_4^+-N 和

NO₃-N 呈显著负相关(p<0.01); Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、不动杆菌 属(Acinetobacter)和假黄色单胞菌属(Pseudoxanthomonas)与NO₃--N、AP和AK呈显著正相关(p< 0.01),与pH、NH,+-N呈显著负相关(p < 0.01)。

进一步采用 Spearman 相关性热图分析评估成熟 期潜在生态功能与环境因子之间的关系。结果表

与 NH_a^+ -N 和 AK 呈显著正相关(p < 0.01); 芳香族 化合物降解和几丁质分解过程与AP呈显著正相关 (p<0.05);几丁质分解过程与AK呈显著正相关 (p<0.01)(图 6b)。 NO3-NNH4-NAP рH (b) AK (a) 1.0 Pseudomonas 1 OCK **■** F1 2 EC ♦F2 0.5 NH_4^+-N ▲F3 3 NO,-N

明,硝酸盐还原过程与SOM呈极显著负相关

(p<0.001), 光能自养型和硝酸盐呼吸过程与

SOM 呈显著负相关(p < 0.05);纤维素分解过程

注:图 a 为土壤属水平群落与化学性质的 RDA 分析, 红色箭头表示细菌属水平优势物种, 蓝色箭头表示土壤化学性质;图 b 为细菌群落潜在 碳氮循环功能与土壤化学性质的 Spearman 相关性热图, X轴为土壤化学性质, Y轴为细菌全磷潜在碳氮循环功能; 1 为芳香化合物降 解,2为纤维素分解,3为芳香烃降解,4为光能异养型,5为反硝化,6为几丁质分解,7为硝酸盐还原,8为硝酸盐呼吸;色柱表示相关性, 蓝色表示正相关,红色表示负相关;*表示p<0.05,**表示p<0.01,***表示p<0.001。

图 6 成熟期细菌群落潜在生态功能与土壤化学性质的相关性

Fig.6 Relationships between potential ecological functions of bacterial communities and soil chemical properties at the maturity stage

讨论 3

3.1 黄芩渣有机肥对马铃薯连作土壤化学性质的 影响

连作改变栽种马铃薯地块的土壤理化性质, 使得土壤含盐量和体积质量上升,有机质质量分 数下降[14]。土壤 pH 和电导率是反映土壤盐碱情 况的重要指标。本研究黄芩渣有机肥的施用对土 壤pH的改善并不显著,2个采样期间pH整体略微 上升。土壤EC整体呈下降趋势,与CK相比,成熟 期F1和F3处理土壤EC显著下降。土壤pH上升 可能是因为植物生长吸收的阳离子比阴离子多, 同时有机肥的施入能改善土壤团粒结构,造成pH 升高[15]。EC代表着土壤中总离子浓度,马铃薯属 于对土壤 EC 中等敏感作物,土壤 EC 安全阈值为 1.7 Ds/m^[16],本研究中各处理土壤EC均低于安全 阈值,表明各处理对马铃薯生长均无限制作用。试验 中所使用的黄芩渣有机肥中含有大量的无机盐,导致 结薯期F2处理土壤EC高于CK,与XIAO等[17]研究 结果相似。结薯期至成熟期是马铃薯块茎膨大时期, 植株生长会大量吸收土壤中离子造成EC降低。

本研究结果表明,施用黄芩渣有机肥可提高土 壤AP、AK和SOM质量分数,与冀妍丽等[18]研究结 果一致。马铃薯生长过程中对NO₃-N的利用率高 于NH4+-N,同时在碱性土壤中NH4+-N易被土壤中 负电荷吸附从而减缓铵态氮的转化速度[19],这是成 熟期土壤NO3-N大幅降低而NH4+N变化不大的 主要原因,与YANG等[20]研究结果一致。从结薯期 到成熟期,土壤AP整体呈下降趋势,成熟期F1~F3 处理土壤 AP均高于 CK, F1 处理土壤 AP 较结薯期 有所上升,该结果可能源于供试黄芩渣有机肥中的 枯草芽孢杆菌和地衣芽孢杆菌促进有机质的分解。 施用黄芩渣有机肥显著提高成熟期土壤AK质量分 数,且整体质量分数高于结薯期。可能是因为供试 有机肥中 K₂O 分解带来的 AK 多于马铃薯生长所需量,使得根区土中 AK 处于过剩状态。

3.2 黄芩渣有机肥对成熟期薯表土壤细菌群落的 影响

微生物是土壤生态系统的重要组成部分,平衡土壤微生物种群结构是提高土壤质量和作物产量的重要途径^[21]。本研究中,施人黄芩渣有机肥后降低微生物的 Chao1、ACE和 Shannon指数。虽然这些处理细菌群落丰富度较低,但其细菌群落绝对丰度仍保持在较高水平。这种情况的出现可能是由于土壤中变形菌门、拟杆菌门、放线菌门和厚壁菌门为富营养型细菌,而黄芩渣有机肥中含有大量易分解碳源,诱导这些优势细菌群落富集,从而占据部分细菌群落的生态位^[22]。

马铃薯表土中门水平主要细菌类型为变形菌 门、放线菌门、厚壁菌门和硝化螺旋菌门 (Nitrospirota)等,与王紫涵等[23]的研究结果相似。放 线菌门和变形菌门参与土壤有机质分解、碳循环、氮 循环和磷循环。放线菌门的微生物是参与固定CO。 的主要参与者之一,变形菌门的微生物可以促进土 壤氮素的转化[24]。酸杆菌门在碳的生物化学循环中 发挥重要作用,拟杆菌门能够促进有机物分解并转 化为CO₂,这2种菌可能更加适应碳源质量分数高的 环境[25];培肥过程中添加的枯草芽孢杆菌和地衣芽 孢杆菌在生物防治中发挥着重要作用,可通过调节 马铃薯根际土壤微生物群落结构来缓解马铃薯连作 障碍,降低马铃薯疮痂病发病率[26],可能是土壤厚壁 菌门绝对丰度提高的关键。本研究中,F1和F2处理 的变形菌门、拟杆菌门、厚壁菌门和放线菌门的绝对 丰度有所提高,而F3处理的放线菌门和酸杆菌门绝 对丰度有所下降。可能是因为放线菌门和酸杆菌门 均为寡营养型细菌,且酸杆菌门是主要在低pH环境 中生长的嗜酸性细菌[27],而F3处理SOM质量分数 和pH最高,同时成熟期土壤AP、AK有所富余,从而 限制放线菌门和酸杆菌门的生长繁殖。

在属水平上,添加黄芩渣有机肥后绝对丰度增加的有 Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium、鞘氨醇单胞菌属、假黄色单胞菌属和黄杆菌属。其中,鞘氨醇单胞菌属和假黄色单胞菌属具有固氮、溶解磷酸盐、促进植物生长的功能^[28];黄杆菌属既参与碳循环过程,又参与纤维素分解和硝酸盐还原过程^[29]。LEfSe分析结果显示,CK处理肠杆菌科、果胶杆菌属等病原细菌的绝对丰度显著高于其他3个处理。这可能是F1~F3施用的黄芩渣有机肥中含有能够抑制土壤病原菌的黄酮类化合物^[11]。

F1处理显著富集的马赛菌属和不动杆菌属均是与碳相关的功能菌,马赛菌属是大量存在于根际土壤中的富营养性细菌^[30],不动杆菌属在柴油、石油烃降解和土壤重金属修复中具有重要作用,促进碳循环的同时也增强土壤净化能力^[31]。副球菌属和柄杆菌属具有反硝化脱氮功能,部分副球菌包含多种硝酸盐还原酶和亚硝酸盐还原酶,从而促进反硝化过程^[32],在F2处理中丰度增加不利于土壤固氮。说明黄芩渣有机肥的添加能够促进土壤有益细菌丰度的增加,提升土壤微生物群落元素循环潜力。

成熟期薯表土细菌群落功能预测结果表明,参与 土壤碳循环的细菌主要类型为芳香化合物降解、纤维 素分解、芳香烃降解和光能自养型。参与氮循环的细 菌主要类型为反硝化、几丁质分解、硝酸盐还原和硝 酸盐呼吸型,与聂扬眉等[33]的研究结果相似。几丁质 分解菌能够将几丁质分解为无机氮,硝酸盐还原菌能 够将土壤中的硝酸盐还原为铵态氮[34]。本研究结果 表明,施入黄芩渣有机肥后,参与几丁质分解和硝酸 盐还原过程的细菌绝对丰度高于参与不利于氮素积 累的反硝化和硝酸盐呼吸过程细菌的绝对丰度,提高 土壤氮素有效性;参与纤维素分解、芳香族化合物降 解和几丁质分解过程的细菌绝对丰度与土壤AK、AP 之间呈显著正相关,在一定程度上证实土壤微生物和 土壤生物化学特性之间存在相互联系。李慧敏等[35] 的研究结果表明,土壤中氨化细菌、硝化细菌、固氮菌 和纤维素分解菌的数量随着连作年限的延长而锐减, 且各细菌生理类群均呈降低趋势[36]。本研究中,施入 黄芩渣有机肥后,各处理成熟期薯表土细菌群落中纤 维素分解菌的绝对丰度均显著上升,几丁质分解型细 菌绝对丰度均有不同程度的提高。

4 结论

- 1) 黄芩渣有机肥能够满足马铃薯生长所需养分,施用后对连作土壤 AP、AK 的蓄持及提升能力较强,且显著提高 SOM 质量分数。
- 2)施用黄芩渣有机肥可以增加马铃薯表土中拟 杆菌门、厚壁菌门、黄杆菌属和鞘脂单胞菌属等优势 有益细菌群落的绝对丰度。
- 3) 黄芩渣有机肥能改变土壤细菌介导的碳氮循环功能,提高马铃薯成熟期土壤细菌群落纤维素分解、芳香烃降解和几丁质分解潜力,提高土壤氮素有效性。
- 4)F1处理对提高土壤养分质量分数、细菌群落 丰度和功能活性的效果最显著,即菌剂添加量3% (T1)为黄芩渣有机肥最佳体系。

参考文献:

- [1] 徐沛国,谢奎忠,胡新元,等.不同连作年限马铃薯根际 土壤细菌群落特征研究[J].干旱地区农业研究,2024, 42(3):197-205.
 - XU P G, XIE K Z, HU X Y, et al. Effects of different continuous cropping years on diversity of bacterial communities in the rhizosphere soil of potatoes [J]. Agricultural Research in the Arid Areas, 2024, 42(3):197-205.
- [2] 李静娟,周波,张池,等.中药渣蚓粪对玉米生长及土壤肥力特性的影响[J].应用生态学报,2013,24(9):2651-2657. LIJJ, ZHOUB, ZHANGC, et al. Effects of herb residue vermicompost on maize growth and soil fertility[J]. Chinese Journal of Applied Ecology,2013,24(9):2651-2657.
- [3] GUOBB, WUJP, CHENJW, et al. Effects of Chinese medicine herbal residues on antibiotic resistance genes and the bacterial community in chicken manure composting[J]. The Journal of Antibiotics, 2022, 75(3):164-171.
- [4] ZHOU Y, SELVAM A, WONG J W C. Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste [J]. Bioresource Technology, 2016, 217; 190-199.
- [5] 黄卉,麻馨尹,石静蕾,等.中药渣有机肥对土壤生态及药用植物生长发育的影响[J].中药材,2020,43(5):1266-1270. HUANG H, MAXY, SHIJL, et al. Effects of Chinese medicine residue organic fertilizer on soil ecology and growth and development of medicinal plants[J].Journal of Chinese Medicinal Materials,2020,43(5):1266-1270.
- [6] 陈德乐,王兴祥,张亚楠,等.持续施用生物有机肥对花生产量和根际细菌群落的影响[J].土壤,2021,53(3):537-544. CHEN D L, WANG X X, ZHANG Y N, et al. Effect of persistent application of bioorganic fertilizer on peanut yield and rhizosphere bacterial community [J]. Soils, 2021,53(3):537-544.
- [7] 李青,李其胜,谢昶琰,等.生物有机肥与生物质灰渣配施对连作甜瓜生长及土壤性质的影响[J].土壤通报,2024,55(5):1386-1394.
 - LIQ, LIQS, XIECY, et al. Effects of combined application of bio-organic fertilizer and biomass ash on the growth of continuous cropping muskmelon and soil properties [J]. Chinese Journal of Soil Science, 2024, 55(5): 1386-1394.
- [8] 王海婷,彭佩钦,陈剑平,等.生物有机肥对烟草根际微生物群落及青枯雷尔氏菌丰度的影响[J].土壤通报,2023,54(1):126-137.
 WANG H T, PENG P Q, CHEN J P, et al. Influence
 - wANG H T, PENG P Q, CHEN J P, et al. Influence on the tobacco microbial community and the relative abundance of *Ralstonia solanacearum* in rhizosphere soil after the application of bio-organic fertilizer [J]. Chinese Journal of Soil Science, 2023, 54(1):126-137.
- [9] CAI MY, DONG GH, ZHOUYT, et al. Product

- maturation and antibiotic resistance genes enrichment in food waste digestate and Chinese medicinal herbal residues co-composting [J]. Bioresource Technology, 2023, 388:e129765.
- [10] DING C Y, SHEN Q R, ZHANG R F, et al. Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (*Ralstonia solanacearum*) of potato [J]. Plant and Soil, 2013, 366(1):453-466.
- [11] ZEHRAVI M, KARTHIKA C, AZAD A K, et al. A background search on the potential role of *Scutellaria* and its essential oils [J]. BioMed Research International, 2022, 2022; e7265445.
- [12] SUN Z H, MAO Z A, YANG L Y, et al. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China[J]. Ecological Indicators, 2021, 129:e108020.
- [13] LORIA R, BIGNELL D R D, MOLL S, et al. Thaxtomin biosynthesis: The path to plant pathogenicity in the genus *Streptomyces* [J]. Antonie Van Leeuwenhoek, 2008,94(1):3-10.
- [14] 徐雪风,沈宝云,回振龙,等. 钙处理对连作马铃薯生长发育的影响及其机理[J].华北农学报,2016,31(增刊1):289-295. XU XF, SHEN BY, HUIZL, et al. Effect of calcium treatment on the growth and development of continuous cropping potato and its mechanism [J]. Acta Agriculturae Boreali-Sinica, 2016, 31(S1):289-295.
- [15] HU W, ZHANG Y P, RONG X M, et al. Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality [J]. Biochar, 2024, 6(1):e3.
- [16] KATERJI N, VAN HOORN J W, HAMDY A, et al. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods [J]. Agricultural Water Management, 2003, 62(1):37-66.
- [17] XIAO M, LIU G M, JIANG S G, et al. Bio-organic fertilizer combined with different amendments improves nutrient enhancement and salt leaching in saline soil: A soil column experiment[J].Water, 2022, 14(24): e4084.
- [18] 冀妍丽,王玉霞,郭龙,等.中药渣有机肥对作物生长、土壤化学性状及酶活性的Meta分析[J].北方园艺,2024(4):57-65. JI Y L, WANG Y X, GUO L, et al. Meta-analysis of crop growth, soil chemical properties and enzyme activities induced by Chinese herb residue manure[J].Northern Horticulture,2024(4):57-65.
- [19] DAIX J, XIAO X, DAIW T, et al. Comparison of nitrate and ammonium leaching of soils collected from different regions of China: A soil column experiment[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(4):6059-6070.
- [20] YANG J J, JIANG L H, GUO Z W, et al. The Cd immobilization mechanisms in paddy soil through ureoly-

- sis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis [J]. Journal of Hazardous Materials, 2024, 465:e133174.
- [21] 马琨,张丽,杜茜,等.马铃薯连作栽培对土壤微生物群落的影响[J].水土保持学报,2010,24(4);229-233. MA K, ZHANG L, DU Q, et al. Effects of continuous cropping on soil microorganism community structure and function [J]. Journal of Soil and Water Conservation, 2010,24(4);229-233.
- [22] LIU H Y, HUANG X, TAN W F, et al. High manure load reduces bacterial diversity and network complexity in a paddy soil under crop rotations [J]. Soil Ecology Letters, 2020, 2(2): 104-119.

[23] 王紫涵,刘莎,杨光,等.运用宏基因组技术研究施加中

- 药渣有机肥对丹参及土壤微生物群落的影响[J]. 中国中药杂志,2024,49(5):1206-1216.
 WANG Z H, LIU S, YANG G, et al. Effects of organic fertilizer from traditional Chinese medicine residues on growth and soil microbial community of *Salvia miltior*-
- rhiza by metagenomic technique[J]. China Journal of Chinese Materia Medica, 2024, 49(5):1206-1216.

 [24] LIU X Y, SHI Y, KONG L Y, et al. Long-term appliance.
- cation of bio-compost increased soil microbial community diversity and altered its composition and network [J]. Microorganisms, 2022, 10(2):e462.
- [25] WOLIŃSKA A, KUŹNIAR A, ZIELENKIEWICZ U, et al. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach[J]. Applied Soil Ecology, 2017, 119:128-137.
- [26] 王伊琨,高飞,李昌伟,等. 微生物肥料对土壤和作物生长的影响[J].农业工程,2024,14(9):68-72. WANG Y K, GAO F, LI C W, et al. Effect of microbial fertilizer on soil and crop growth [J]. Agricultural Engineering,2024,14(9):68-72.
- [27] 赵琳,刘桂珍,钱笑杰,等.炭基肥添加对蜜柚果园酸性 土壤 pH 和交换性能的影响[J].水土保持学报,2022, 36(3):244-251. ZHAO L, LIU G Z, QIAN X J, et al. Effects of bio-
 - ZHAO L, LIU G Z, QIAN X J, et al. Effects of biochar-based fertilizer on pH and exchange capacity of acidic soil in pomelo orchard [J]. Journal of Soil and Water Conservation, 2022, 36(3):244-251.
- [28] ZHANG W M, LI S Q, ZHANG P L, et al. The colonization of synthetic microbial communities carried by bioorganic fertilizers in continuous cropping soil for potato plants[J]. Microorganisms, 2024, 12(11); e2371.
- [29] 侯建伟,邢存芳,杨莉琳,等.生物炭与有机肥等碳量投入土壤肥力与细菌群落结构差异及关系[J].环境科学, 2024,45(7):4218-4227.
 - HOU J W, XING C F, YANG L L, et al. Differences in soil fertility and bacterial community structure between

- carbon inputs such as biochar and organic fertilizer and their relationship[J]. Environmental Science, 2024, 45(7): 4218-4227.
- [30] 黄瑞林,张娜,孙波,等.典型农田根际土壤伯克霍尔德 氏菌群落结构及其多样性[J].土壤学报,2020,57(4): 975-985.
 - HUANG R L, ZHANG N, SUN B, et al. Community structure of burkholderiales and its diversity in typical maize rhizosphere soil[J]. Acta Pedologica Sinica, 2020, 57(4):975-985.
- [31] 黄臣,蒋霖,梁银萍,等.醋酸钙不动杆菌对盐碱胁迫下 达乌里胡枝子促生效应研究[J].微生物学报,2023, 63(8):3264-3278.
 - HUANG C, JIANG L, LIANG Y P, et al. Acineto-bacter calcoaceticus promotes the seedling growth of *Lespedeza daurica* under saline-alkaline stress [J]. Acta Microbiologica Sinica, 2023, 63(8): 3264-3278.
- [32] NTOUGIAS S, MELIDIS P, NAVROZIDOU E, et al. Diversity and efficiency of anthracene-degrading bacteria isolated from a denitrifying activated sludge system treating municipal wastewater [J]. International Biodeterioration and Biodegradation, 2015, 97:151-158.
- [33] 聂扬眉,步连燕,陈文峰,等.高量秸秆还田配施芽孢杆菌对沙化土壤细菌群落及肥力的影响[J].环境科学,2023,44(9):5176-5185.
 - NIE Y M, BU L Y, CHEN W F, et al. Effect of high-volume straw returning and applying *Bacillus* on bacterial community and fertility of desertification soil[J]. Environmental Science, 2023, 44(9):5176-5185.
- [34] 赖才星,林华,刘泽蕙,等.巨大芽孢杆菌-青葙组合对镉 污染土壤微生物群落演替的驱动作用[J].中国环境科 学,2025,45(2):1036-1044.
 - LAIC X, LIN H, LIU Z H, et al. The driving effect of *Bacillus megaterium-Celosia argentea* L. combination on the succession of microbial communities in cadmium-contaminated soil[J].China Environmental Science, 2025, 45 (2):1036-1044.
- [35] 李慧敏,王瑞,仲月明,等.高投入蔬菜种植体系磷素高效利用的根际对话及效应研究进展[J].土壤学报,2022,59(4):924-934.
 - LI H M, WANG R, ZHONG Y M, et al. Rhizosphere communication and its effects on improving phosphorus utilization in high-input vegetable production system: A review[J]. Acta Pedologica Sinica, 2022, 59(4):924-934.
- [36] 马得祯,郭晓冬,谭雪莲,等.马铃薯连作对根际土壤微生物生理类群的影响[J].甘肃农业大学学报,2016,51(2):35-39.
 - MA D Z, GUO X D, TAN X L, et al. Effect of potato continuous cropping on rhizosphere soil microbial physiological colony[J]. Journal of Gansu Agricultural University, 2016, 51(2):35-39.