DOI: 10.13870/j.cnki.stbcxb.2025.05.034

CSTR: 32310.14.stbcxb.2025.05.034

廖炟,李滨玲,宋薇,等.不同光照强度对入侵种大狼耙草叶片光合特性的影响[J].水土保持学报,2025,39(5):349-356.

LIAO Da, LI Binling, SONG Wei, et al. Effects of different light intensities on photosynthetic characteristics of invasive species *bidens frondosa* leaves [J]. Journal of Soil and Water Conservation, 2025, 39(5): 349-356.

不同光照强度对入侵种大狼耙草叶片光合特性的影响

廖 炟1, 李滨玲1, 宋 薇1, 周 兵1,2, 苏启陶1,2, 闫小红1,2

(1. 井冈山大学生命科学学院,江西 吉安 343009; 2. 生物入侵与生物安全江西省重点实验室,江西 吉安 343009)

摘 要:[目的] 探究不同光照强度对入侵种大狼耙草与本地种山莴苣光合特性的影响,为揭示大狼耙草的入侵机制提供参考依据。[方法] 以 2 种植物盆栽幼苗为材料,采用黑色遮阳网建立 100%、40%、24%、14% 光强的遮阴棚,比较植物处理间叶片光合特性差异。[结果] 1)100% 和 14% 光强下,大狼耙草最大净光合速率($P_{\rm max}$)、光饱和点(LSP)均明显高于山莴苣,光补偿点(LCP)则低于山莴苣。 2)100% 和 14% 光强下,大狼耙草的叶绿素质量分数明显高于山莴苣。 3)大狼耙草的羧化效率(CE)、Rubisco 最大羧化速率($V_{\rm c,max}$)、RuBP最大再生速率($J_{\rm max}$)及无 CO_2 时的光呼吸速率($R_{\rm p}$)在 100% 光强下显著高于山莴苣, $V_{\rm c,max}$ 在 14% 光强下明显高于山莴苣,而 $R_{\rm p}$ 在中低光强下下降并低于山莴苣。 4)大狼耙草的 $P_{\rm max}$ 、 $R_{\rm d}$ 、CE、 $A_{\rm max}$ 、 $R_{\rm p}$ 、 $J_{\rm max}$ 比山莴苣具有更高可塑性。[结论] 入侵植物大狼耙草在不同光强下表现出更高的光合能力和光合生理可塑性,对光强具有更广泛的适应范围。

关键词:入侵种;大狼耙草;光照强度;光合特性

中图分类号:Q948.1

文献标识码:A

文章编号:1009-2242(2025)05-0349-08

Effects of Different Light Intensities on Photosynthetic Characteristics of Invasive Species *Bidens frondosa* Leaves

LIAO Da¹, LI Binling¹, SONG Wei¹, ZHOU Bing^{1,2}, SU Qitao^{1,2}, YAN Xiaohong^{1,2}

(1. College of Life Science, Jinggangshan University, Ji'an, Jiangxi 343009, China;

2. Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, Ji'an, Jiangxi 343009, China)

Abstract: [**Objective**] The study investigates the effects of different light intensities on the photosynthetic characteristics of the invasive species $Bidens\ frondosa$ and the native species $Lactuca\ indica$, aiming to provide a reference for revealing the invasion mechanism of B. frondosa. [Methods] Potted seedlings of the two plant species were used as the materials. Shading shelters were established using black shade nets with light intensities of 100%, 40%, 24%, and 14%, and differences in leaf photosynthetic characteristics under varied treatments were compared. [Results] 1) Under 100% and 14% light intensities, B. frondosa exhibited significantly higher maximum net photosynthetic rate (P_{max}) and light saturation point (LSP), but lower light compensation point (LCP) than L. indica. 2) Under 100% and 14% light intensities, the chlorophyll content of B. frondosa was significantly higher than that of L. indica. 3) Under 100% light intensity, B. frondosa showed significantly higher carboxylation efficiency (CE), maximum carboxylation rate of Rubisco ($V_{c, max}$), maximum regeneration rate of RuBP (J_{max}), and photorespiration rate without $CO_2\ (R_p)$ than L. indica. $V_{c, max}$ was also significantly higher under 14% light intensity, while R_p decreased under medium and low light intensities and was lower than L. indica. 4) B. frondosa exhibited greater plasticity in P_{max} , R_d , CE, A_{max} , R_p , and J_{max} than L. indica. [Conclusion] The invasive plant B. frondosa shows higher photosynthetic capacity and greater photosynthetic physiological plasticity under different light intensities, indicating a broader adaptability to light intensities.

资助项目:江西省自然科学基金项目(20212BAB205018);国家自然科学基金项目(32360264)

第一作者:廖炟(2001—),女,硕士研究生,主要从事入侵植物生理生态研究。E-mail: 1779044601@qq.com

通信作者:闫小红(1977—),女,副教授,主要从事入侵植物生理生态研究。E-mail: yanxiaohong325@126.com

Keywords: invasive species; *Bidens frondosa*; light intensity; photosynthetic characteristics

Received: 2025-03-26 **Revised**: 2025-04-20 **Accepted**: 2025-05-18 **Online**(www.cnki.net): 2025-07-07

生物入侵打破生态平衡,造成严重的生态灾难, 是导致全球生物多样性丧失的重要因素。有关外来 入侵植物的入侵机制和假说主要有天敌逃避假说、 增强竞争力进化假说和化感作用机制等[1-2],外来入 侵植物本身对异质性生境超强的适应能力也是其重 要的入侵机制[3-4]。光是植物生长和繁殖的重要影响 因子[5]。光环境的变化在自然界中普遍存在,包括入 侵植物在内的任何植物在其生命周期中都会经历光 环境的变化[6]。光环境的改变影响光合作用、营养物 质的吸收及在植物体内的重新分配等系列生理过 程,最终表现为植株各构件形态上不同程度的变 化[7-8]。光是一种极端异质性的资源[9],可影响外来 植物的入侵、定植和扩散过程[10]。有研究[11-12]表明, 对不同光强环境的高度适应性是外来植物成功入侵 的一个重要方面,如薇甘菊(Mikania micrantha)、紫 茎泽兰(Ageratina adenophora)和白花鬼针草 (Bidens alba)等入侵植物对光环境的适应性研究[13-15] 表明,它们对光环境的可塑性响应促进其入侵。

植物对光环境的适应性直接体现在不同光环境 下对光的利用能力上,即光的有效性。光的有效性 是影响植物生长、繁殖和生存的主要环境因素[16],主 要体现在植物光合作用能力的大小及碳收益和碳损 失之间的平衡[17],具体可反映在最大净光合速率 (P_{max})、光饱和点(LSP)、Rubisco最大羧化速率 (V_{cmax})、RuBP最大再生速率(J_{max})及呼吸效率(RE) 方面。如朱文杰等[18]研究发现,3种藤本植物的 P_{max} 和LSP在不同光强下表现出明显差异。大狼耙草 (Bidens frondosa) 为菊科(Compositae) 鬼针属 (Bidens sp.)1 a 生草本植物,原产于北美洲,目前在 中国长江中下游地区广泛分布,对生物多样性和农 业生产等造成严重危害[19]。在野外调查中发现,大 狼耙草可入侵多种生境,荒地、林下等不同光环境下 均长势良好,显示其对不同光照环境较强的适应性。 然而,大狼耙草是如何适应光环境异质性,是否在不 同光强下具有更高的光有效性,目前还不清楚。为 此,本研究以入侵植物大狼耙草和伴生种山莴苣 (Lactuca indica)为对象,比较不同光强下大狼耙草 光合能力的差异,探讨其对光环境异质性的适应能 力与入侵性的关系,为揭示大狼耙草的入侵机制及 防治提供参考依据。

1 材料与方法

1.1 植物材料

试验在井冈山大学生命科学学院生物园进行。前期的野外调查中发现,本地种山莴苣多与大狼耙草伴生生长,且二者均为菊科植物,生长期也较为一致,为此选用山莴苣为对照植物进行试验。大狼耙草和山莴苣的种子于9—11月收集,实验室保存。于翌年5月播于苗床中,当植株高度20~30 cm时,选择大小一致的种苗转移到21 cm×21 cm的黑色塑料营养钵中,栽培基质为园土、草炭土、河沙按照3:1:1的体积比混合而成。所有种苗放置在相对光强40%下适应2周后进行处理。

1.2 光强处理

利用黑色遮阳网在开放样地中建立相对光强分别为 $14\%(I_{14},3$ 层遮阳网)、 $24\%(I_{24},2$ 层遮阳网)、 $40\%(I_{40},1$ 层遮阳网)和 $100\%(I_{100},全光照,无遮阳网)的4个遮阴棚,尺寸为 <math>6.0$ m× 6.0 m× 2.5 m,棚中光照强度用 Li-6400XT 光量子传感器进行测定。将适应 2 周的 2 种植物各随机分成 4 组,每组每种植物 15 盆,分别置于 4 个遮阴棚中,并进行相同的水肥管理。为避免位置影响,营养钵排列在每个遮阴棚的中心位置,整个试验过程中每周重新随机摆放 1 次。

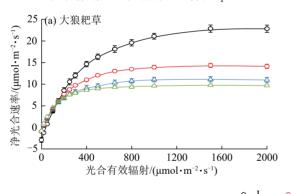
1.3 光响应曲线和 CO₂响应曲线及其特征参数测定

在遮阴处理73d后,对每种植物每个处理进行光 响应曲线和CO₂响应曲线的测定。于9:00—11:30和 14:30-16:30进行测定,每种植物每个光强处理随 机选取4株健康植株,采用Li-6400XT便携式光合作 用测定系统,光源采用Li-6400XT-02B红蓝光源 (Li-Cor, USA),采用自动测量程序进行测定,利用 CO₂钢瓶控制 CO₂浓度为(380±2) μmol/mol,泵流 速为 500 mmol/s, 叶片温度为(35±1) ℃, 空气相对 湿度约为70%。样叶在每个光强下至少180 s记录 1个点。光合有效辐射梯度分别设置为2000、1500、 1 000,800,650,500,400,300,250,200,150,100,50, 用YE等[20]的模型进行光合一光响应曲线拟合,并获 得最大净光合速率(Pmax)、光饱和点(LSP)、光补偿点 (LCP)、暗呼吸速率 (R_d) 。然后在饱和光强下 CO_2 浓 度梯度分别设置为1500、1300、1000、800、600、380、 300、260、220、180、140、110、80、50、0 μmol/mol,测定 相应的净光合速率(Pn),拟合光合-CO2响应曲线,并 获得羧化效率(CE)、无CO₂时的光呼吸速率(R_p)等参数。用MCMURTRIE等^[21]的方法计算Rubisco最大羧化速率($V_{c,max}$)和RuBP最大再生速率(J_{max})。

1.4 光合色素质量分数测定

参照 ARNON^[22]方法进行叶绿素质量分数测定,并适当加以改进。用直径 5 mm 的打孔器打 15个圆片(避开叶脉),剪碎后置于离心管内,加入 5 mL 80% 丙酮,在黑暗处浸提 24 h,用 UV-2550 紫外可见分光光度计分别测定 470、645、652、663 nm 处的吸光度比值,根据吸光度比值计算单位面积的叶绿素和类胡萝卜素质量分数。每株植物 4次重复,每次重复1叶。

1.5 可塑性指数计算


根据 VALLADARES 等^[23]的方法计算可塑性指数(PI)。计算公式为:

$$PI = (X_{max} - X_{min})/X_{max}$$

式中: X_{max} 和 X_{min} 分别为各参数在处理间的最大平均值和最小平均值。

1.6 数据统计分析

采用 Microsoft Excel 2019 和 SPSS 19.0 软件进行数据处理与统计分析。采用单因素方差分析比较同一物种不同光强下指标间的差异,并用最小显著性差异法(LSD)检验数据之间的差异显著性(p < 0.05)。

采用独立样本t检验比较相同光强下两物种之间指标的差异,文中所列数据均为平均值士标准误(n=4)。采用Origin 2021软件作图。

2 结果与分析

2.1 光强对大狼耙草和山莴苣叶片光合-光响应曲 线及其特征参数的影响

2.1.1 光合-光响应曲线 2种植物叶片的光合-光响 应曲线在4种不同光强处理下均随着光合有效辐射 (PAR)的增强先快速上升后趋于稳定或下降,但处理 间上升幅度不同,并且物种间也存在差异(图1)。其 中,由图1a可以看出,在相同PAR下,各处理大狼耙 草叶片的净光合速率(Pa)随光照强度的升高而增加, 并在全光照(100%光强)下最高,而在14%~40%光 强下均明显低于100%光强,且随光强的减弱而逐渐 降低;在不同生长光强处理下,大狼耙草在高PAR部 分并没有出现较强的光抑制现象。同时,由图 1b 可 知,伴生种山莴苣叶片P。在全光照(100%光强)下明 显低于其他光强,在中低光强(14%~40%)范围内, P。随着光照强度的升高而增加;在最低生长光强 (14%)下,山莴苣光合-光响应曲线在高PAR部分的 光抑制较明显。在相同的生长光强下,大狼耙草的 P_n 均显著高于相应的山莴苣(图1)。

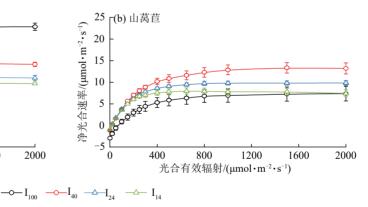


图 1 不同光强大狼耙草和山莴苣光合-光响应曲线

Fig. 1 Photosynthesis-photosynthetic response curves of B. frondosa and L. indica under different light intensities

2.1.2 光合响应特征参数 通过对光合-光响应曲线的拟合方程可得到2种植物叶片最大净光合速率(P_{max})、光饱和点(LSP)、光补偿点(LCP)及暗呼吸速率(R_d)、呼吸效率(RE)等光合参数(表1)。其中,大狼耙草的 P_{max} 、LSP、LCP及 R_d 均随生长光照强度的减弱而逐渐降低,且在14%~40%光强内均与100%光强差异显著;在不同光强处理下,山莴苣的LSP、LCP和 R_d 随生长光照强度的减弱均表现出与大狼耙草基本相同的逐渐降低趋势,但其 P_{max} 值表现先升后降趋势,14%~40%光强处理均高于100%光强,但仅40%光强处理下增幅显著。同时,2种植物叶片

RE均随生长光照强度的减弱而先增后降,且遮阳处理均高于全光照处理,多达到显著水平。

比较 2 种植物的光合参数发现,大狼耙草RE在 4 个不同光强范围内均显著高于山莴苣,增幅为 $30\%\sim40\%$; P_{max} 在不同生长光强下均不同程度高于山莴苣,但仅在 100% 光强下增幅达到显著水平,约为山莴苣的 3.1倍(p<0.05); LSP 也大多高于相应山莴苣,而 LCP则均不同程度低于相应山莴苣,并均在 100% 和 14% 光强下差异显著,山莴苣 LSP增幅分别为 31.6% 和 45.0%, LCP 降幅分别为 32.9% 和 34.7%; R_{d} 则与山莴苣没有显著差异(表1)。

表 1 不同光强下大狼耙草和山莴苣叶片的光合响应特征参数

Photosynthetic response characteristic parameters of B. frondosa and L. indica leaves under different light intensities

物种	处理	最大净光合速率/	光饱和点/	光补偿点/	暗呼吸速率/	呼吸效率
123 111	处垤	$(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1})$	$(\mu mol \cdot m^{-2} \cdot s^{-1})$	$(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1})$	$(\mu mol \cdot m^{-2} \cdot s^{-1})$	"小伙双牛
	I_{100}	$22.96 \pm 0.82 a^*$	$1883.40\!\pm\!128.20 \mathrm{a^*}$	$38.67 \pm 2.78a$	3.00 ± 0.19 a	$7.74 \pm 0.57 b^*$
大狼耙草	I_{40}	$14.43 \pm 0.37 \mathrm{b}$	$1466.81 \pm 117.62 b$	$15.66 \pm 4.61b$	$1.08 \pm 0.27 b$	$13.76\!\pm\!0.66a^*$
(B.frondosa)	I_{24}	$11.19 \pm 0.60c$	$1390.71 \pm 33.09b$	$11.58 \pm 1.01 b$	$1.05 \pm 0.03b$	$13.79\!\pm\!1.77a^*$
	I_{14}	$9.80 \pm 0.26c$	$1309.63\!\pm\!87.56b^*$	$9.98 \pm 0.59 b$	$0.92 \pm 0.02 b$	$10.62\!\pm\!0.47 ab^*$
	I_{100}	$7.41\!\pm\!1.66b$	$1431.54 \pm 103.78a$	$57.61 \pm 6.83 a^*$	$2.92 \pm 0.36a$	$2.79 \pm 0.83c$
山莴苣	I_{40}	13.32 ± 1.26 a	$1598.33 \pm 66.15a$	$18.33 \pm 1.88b$	$1.26 \pm 0.14 b$	$10.65 \pm 0.36a$
(L. indica)	I_{24}	$10.06 \pm 0.48 ab$	$1212.00 \pm 66.89b$	$14.48\!\pm\!0.14b$	$1.09 \pm 0.04 b$	$9.23 \pm 0.98a$
	I_{14}	$8.20 \pm 0.77b$	$903.01 \pm 69.63c$	$15.29 \pm 1.53 b^*$	$1.23\!\pm\!0.17b^*$	6.90 ± 1.66 b

注:表中数据为平均值士标准差;*表示相同光强处理下不同物种之间差异显著(p<0.05);同列不同小写字母表示同一物种在不同光强处理之间差 异显著(p<0.05)。下同。

2.2 光强对大狼耙草和山莴苣叶片光合-CO₂响应 曲线及其特征参数的影响

不同光强处理,2个物种叶片的光合-CO。响应曲 线变化趋势较为一致(图2),即在不同生长光强下, 大狼耙草和山莴苣的净光合速率随胞间CO。浓度的 升高而不断增加,到达CO2饱和点后,则随胞间CO2

(a) 大狼耙草 净光合速率/(µmol·m-²·s-1) 40 30 20 10 0

600

胞间CO,浓度/(μmol·mol-1)

800

1000

浓度的升高而降低。由图 2a 可知,随着生长光强的 减弱,大狼耙草各CO。浓度下的净光合速率也不断降 低,彼此间存在较明显的差异;24%~100%生长光 强下,不同的CO。浓度下山莴苣的净光合速率变化不 大,而在14%的最低生长光强下,净光合速率下降较 为明显(图 2b)。

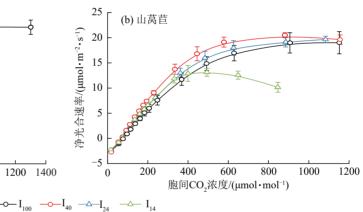


图 2 不同光强下大狼耙草和山莴苣光合-CO₂响应曲线

1200 1400

Fig. 2 Photosynthesis – CO_2 response (P_n-CO_2) curves of B. frondosa and L. indica under different light intensities

通过拟合光合-CO。响应曲线,得到各参数值 (表2)。大狼耙草的CE、Amax、Rp、Vc.max、Jmax随生长光 强的减弱而下降,且不同光强间存在显著差异。相对 于大狼耙草,山莴苣的各参数值随光强改变的变化趋

-10 <mark>-</mark>

200

势并没有明显规律。其CE值与大狼耙草的变化趋势 相反。在24%~100%光强内,山莴苣的 A_{max} 、 $V_{\text{c.max}}$ 和 J_{max}没有明显差异,但均高于14%光强下的各数值,差 异显著。在各光强下, R, 变化不大, 无明显差异。

表 2 不同光强下大狼耙草和山莴苣叶片的 CO₂响应特征参数

Table 2 CO₂ response characteristic parameters of B. frondosa and L. indica leaves under different light intensities

物种	处理	羧化效率/ (μmol·m ⁻² ·s ⁻¹)	潜在最大光合速率/ (μmol·m ⁻² ·s ⁻¹)	无CO ₂ 时的光呼吸速 率/(μmol·m ⁻² ·s ⁻¹)	Rubisco最大羧化速 率/(μmol·m ⁻² ·s ⁻¹)	RuBP最大再生速 率/(μmol·m ⁻² ·s ⁻¹)
	I_{100}	0.161±0.011a*	$43.86 \pm 2.45 a^*$	$8.90 \pm 0.42 a^*$	$97.45 \pm 1.91 a^*$	226.33±13.45a*
大狼杷 (B.frondosa)	I_{40}	$0.096 \pm 0.006 b$	$26.16\!\pm\!1.50b^*$	$5.33 \pm 0.13b$	$67.71 \pm 4.21b$	$142.82\!\pm\!15.07b^*$
	I_{24}	$0.068 \pm 0.003c$	$20.28 \pm 1.10c$	$3.91 \pm 0.18c$	$53.45 \pm 3.10c$	$108.39 \pm 7.65c$
	I_{14}	$0.044 \pm 0.005 d$	15.42 ± 1.03 d	$2.73 \pm 0.27 d$	$49.83 \pm 0.62c^*$	$79.12 \pm 6.39 d$
	I_{100}	$0.057 \pm 0.004 \mathrm{b}$	19.54 ± 2.03 a	$4.04 \pm 0.29a$	49.28 ± 5.23 a	$106.39 \pm 5.87a$
山莴苣 (L. indica)	I_{40}	$0.076 \pm 0.007 ab$	20.42 ± 1.14 a	4.56 ± 0.30 a	$57.83 \pm 4.22a$	$117.29\!\pm\!11.14a$
	I_{24}	$0.064 \pm 0.002 ab$	20.12 ± 0.93 a	4.09 ± 0.15 a	51.87 ± 2.26 a	$105.36 \pm 4.57a$
	I_{14}	$0.083 \pm 0.010 a^*$	$13.06 \pm 0.91 b$	$4.44 \!\pm\! 0.34 a^*$	34.41 ± 1.97 b	$68.92 \pm 4.92 b$

2.3

光强对大狼耙草和山莴苣叶片光合色素质量分

随着光照强度的减弱,大狼耙草的单位叶面积

叶绿素质量分数(Chl)逐渐升高, 目各光强之间均存

在显著差异;不同光强下生长的大狼耙草单位叶面

积类胡萝卜素质量分数(Car)没有明显差异:大狼耙

草叶绿素 a 与叶绿素 b 质量分数之比(Chl a/b) 随光

强的减弱而逐渐降低,100%光强下,Chla/b最高,与

其他3个光强存在明显差异,在14%~40%光强内,

其比值没有明显差异;类胡萝卜素与叶绿素质量分

数之比(Car/Chl)随光强的减弱而逐渐降低,并且各

大狼耙草和山莴苣 2 个物种间各气体交换参数值也存在差异(表 2)。在 100% 光强下,大狼耙草的CE高于山莴苣,而在 14% 光强下,其值则低于山莴苣,在 24% 和 40% 光强下,则没有明显的差异。在 100% 和 40% 光强下,大狼耙草的 A_{max} 显著高于山莴苣,分别约为山莴苣的 2.2、1.3 倍,但在 24% 和 14% 光强下,二者 A_{max} 没有显著差异。在 100% 光强下,大狼耙草的 $V_{\text{c,max}}$ 和 J_{max} 显著高于山莴苣,分别为山莴苣的 2.0、1.9 倍,而在 40% 和 24% 光强下,大狼耙草的 $V_{\text{c,max}}$ 没有显著差异,在 14% 光强下,大狼耙草的 $V_{\text{c,max}}$ 也明显高于山莴苣,而 J_{max} 虽高于山莴苣,但无显著差异。

光强之间存在明显差异(图3)。 0.06 (b) (是 0.05 - 0.04 - 0.03 - 0.03 - 0.02 - 0.02 - 0.02 - 0.03 - 0.02 - 0.03 - 0.0 0.30 _{Γ(a)} 叶绿素质量分数/(g·m⁻²) 0.25 0.20 0.15 0.10 業 0.01 ○ 0.05 0 0 I_{100} I₁₀₀ I_{14} $I_{_{24}}$ I_{14} $I_{_{40}}$ I_{24} I_{40} 处理 处理 0.30 (d) 0.30 0.25 0.20 0.15 0.10 4 q/s峯拳a/2 2 类胡萝 1 0.05 0 0 I₁₄ I_{100} I_{40} I_{24} \boldsymbol{I}_{100} I_{24} I_{14} 处理 处理 □□ 山莴苣 ■ 大狼耙草

注:图中*表示不同植物在同一处理下差异显著。

图 3 不同光强下大狼耙草和山莴苣叶片光合色素质量分数及其比值

Fig. 3 Photosynthetic pigment contents and their ratios in B. frondosa and L. indica leaves under different light intensities

对于伴生种山莴苣,在100%生长光强下,叶绿素质量分数最低,随着光强的逐渐减弱,叶绿素质量分数逐渐升高,而在最低14%的生长光强下,叶绿素质量分数又有所降低,14%~40%光强的叶绿素质量分数之间没有显著差异(图3a);山莴苣的类胡萝卜素质量分数随生长光强改变而变化的趋势与其叶绿素质量分数变化趋势一致;山莴苣Chla/b和Car/Chl与大狼耙草的Chla/b和Car/Chl与大狼耙草的Chla/b和Car/Chl变化一致,均随生长光强的减弱而逐渐降低(图3b)。大狼耙草和山莴苣种间色素质量分数也存在着较大差异。在最低(14%)和最高(100%)生长光强下,大狼耙草的叶绿素质量分数明显高于山莴苣,而在24%和40%生长光强下,两物种间叶绿素质量分数则没有差异;对于

类胡萝卜素质量分数,除在100%光强下大狼耙草类胡萝卜素质量分数明显高于山莴苣外,在14%~40%光强内,种间类胡萝卜素质量分数无明显差异;2个物种在各生长光强下的Chla/b无明显差异;Car/Chl在14%生长光强下,山莴苣的高于大狼耙草,差异显著(图3)。

2.4 大狼耙草和山莴苣响应曲线特征参数及光合色 素含量可塑性差异

由表 3可以看出,大狼耙草和山莴苣部分拟合参数及色素质量分数的表型可塑性存在差异。大狼耙草的 P_{\max} 、 R_d 、CE、 A_{\max} 、 R_p 、 J_{\max} 6个参数值相较于本地种山莴苣,具有更高的可塑性,而山莴苣的 RE 参数值和类胡萝卜素质量分数具有更高的可塑性。

表 3 大狼耙草和山莴苣叶响应曲线特征参数和光合色素质量分数在不同光照水平处理下的可塑性指数

Table 3 Response curve characteristic parameters and plasticity indices of photosynthetic pigment contents under different light levels for B. frondosa and L. indica leaves

业 人 <i>b</i> 大 田 北 左	可塑性指数			
光合作用指标	大狼耙草(B. frondosa)	山莴苣(L. indica)		
最大净光合速率/(μmol·m ⁻² ·s ⁻¹)	0.57*	0.44		
光饱和点/(µmol·m ⁻² ·s ⁻¹)	0.30	0.37		
光补偿点/(μmol·m ⁻² ·s ⁻¹)	0.74	0.75		
暗呼吸速率/(μmol·m ⁻² ·s ⁻¹)	0.79^{*}	0.63		
呼吸效率	0.44	0.74^*		
羧化效率/(μmol·m ⁻² ·s ⁻¹)	0.73^{*}	0.31		
潜在最大净光合速率/(μmol·m ⁻² ·s ⁻¹)	0.65^{*}	0.36		
无CO ₂ 光呼吸速率/(μmol·m ⁻² ·s ⁻¹)	0.69^{*}	0.11		
Rubisc最大羧化速率/(μmol·m ⁻² ·s ⁻¹)	0.49	0.40		
RuBP最大再生速率/(μmol·m ⁻² ·s ⁻¹)	0.65^{*}	0.41		
叶绿素质量分数/(g·m ⁻²)	0.42	0.49		
类胡萝卜素质量分数/(g·m ⁻²)	0.15	0.33^{*}		

3 讨论

外来入侵植物与本地植物相比,大多具有更高 的资源捕获能力和光合利用能力[24]。净光合速率 (P_n)可直接反映植物光合能力的强弱。本研究表明, 大狼耙草的 P。随环境光强的减弱而逐渐降低,与很 多研究^[25-26]结果相一致。而山莴苣的P_n与环境光强 变化的关系则表现为最高和最低光强下最低,表明 大狼耙草对光环境的改变具有更强的可塑性。光饱 和点(LSP)和光补偿点(LCP)分别反映植物对强光 和弱光的利用能力[27]。本研究表明,入侵植物大狼 耙草在最高100%光强和最低14%光强下,都具有 比本地种山莴苣更高的 LSP 和更低的 LCP, 说明大 狼耙草无论是在高光环境还是在低光环境,对光的 利用范围都大于山莴苣。最大净光合速率(Pmax)可 直接反映植物对光能的利用能力,大狼耙草在各光 强下更高的 P_{max} ,表明其对光环境变化的更强适应能 力和光利用能力,与FENG等[28]及ZHENG等[29]对 入侵种紫茎泽兰和飞机草的研究结果相一致,可见 较强的光适应性是许多入侵植物共有的特性。

呼吸是植物重要的生理过程,可以直接提供代 谢中间产物和能量来维持细胞的活动及生长。很多 研究[30-32]中发现, P_{max} 和 R_{d} 呈正相关。大狼耙草在全 光照下,表现出较高的光合速率,同时也表现出同样 高的呼吸速率,但在全光照下,山莴苣则表现出低 P_{max} 和高R_d,并且在中低光强的R_d值也高于大狼耙草。 说明在相同的光环境下,大狼耙草的光合效率更高。

植物叶绿素质量分数影响植物光合作用的强 弱。由本试验结果可知,随着光照强度的逐渐减弱, 2种植物的叶绿素质量分数均表现出逐渐升高趋势。 在全光照下,大狼耙草的叶绿素质量分数高于山莴 苣,有利于提高光合作用。碳增益假说认为,在低光

下,耐阴性物种比非耐阴性物种具有更高的叶片叶 绿素质量分数和更高的光合能力。大狼耙草在低光 下比山莴苣具有更高的叶绿素质量分数和净光合速 率,表明其具有更强的耐阴性,进一步表明大狼耙草 对光的适应性较强。类胡萝卜素参与叶黄素循环, 可以促进非光化学猝灭(NPQ)对叶绿素的吸收和过 量光能的耗散,保护光合机构免受伤害[33]。类胡萝卜 素质量分数增加,提高叶片的热耗散能力[34]。大狼耙 草在全光照下更高的类胡萝卜素质量分数有利于过 剩光能的热耗散,防止高光伤害。2种植物类胡萝卜 素与叶绿素比值(Car/Chl)随光强的减弱而下降,也 进一步说明类胡萝卜素在强光下对植物的光保护作 用。叶绿素 a/b(Chl a/b)与植物的耐阴性相关[35]。 从本试验的Chla/b的变化规律看,2种植物的Chla/b 在全光照下高于遮阴处理,表明二者叶绿素 a/b 对光 强的变化有较好的适应性。

由光合-CO2响应曲线所获得的羧化效率(CE) 等参数可反映植物的光利用能力的强弱。Rubisco是 光合作用中的关键酶,CE和Vc,max大小直接取决于 RuBP 羧化酶数量与活性[36], Amax 和 Jmax 则反映 RuBP 再生速率和电子传递过程中同化力的多少。 $V_{c,max}$ 和 J_{max} 也被认为是光合作用中光饱和的主要限制因 素[37]。随光照强度的不断减弱,大狼耙草的CE、 A_{max} 、 $V_{\text{c.max}}$ 和 J_{max} 显著下降,说明光照强度的减弱限 制了大狼耙草的 Rubisco 羧化酶活性和 RuBP 的再生 速率;而山莴苣的CE则随光照强度的减弱而逐渐升 高,说明随光照强度的不断减弱,RuBP羧化酶的数 量与活性逐渐升高,山莴苣的 $V_{c,max}$ 在各光强下,并没 有显著的变化, Amax 和 Jmax 只有在最低 14% 光强下才 明显下降,表明山莴苣的 Rubisco 羧化酶活性和 RuBP的再生速率在相对较弱的光强下受到限制;在 100% 光强下大狼耙草的 CE、 A_{max} 、 $V_{c,max}$ 和 J_{max} 值均显著高于山莴苣,说明在强光下,与山莴苣相比,大狼耙草具有更高的 Rubisco 羧化酶活性和 RuBP 的再生速率,而随着光照强度的减弱,大狼耙草 Rubisco 羧化酶活性和 RuBP 的再生速率限制作用更明显。

光呼吸在光合作用的 CO_2 同化中起到辅助作用 [38]。大狼耙草的 R_p 随光强变化的规律表明,相对于 山莴苣,大狼耙草在高光强下可通过光呼吸来减少过 剩光能的累积,保护光合机构免受伤害,同时在低光强下通过降低 R_p 来降低消耗,有利于其生长和繁殖。

4 结论

- 1)光照强度的变化影响大狼耙草的光合能力,相对于山莴苣,不同光强处理下,入侵植物大狼耙草表现出更高的光合能力和光合效率。
- 2)在高光强下,通过增加类胡萝卜素质量分数和提高无CO₂光下呼吸Rp来减少过剩光能的累积,保护光合机构免受伤害。
- 3)大狼耙草具有比伴生种山莴苣更强的光异质性 适应能力和耐受性,适度的遮阴有利于大狼耙草生长。

参考文献:

- [1] 侯清晨,冯燕楼,周玉洁,等.植物入侵机制的主要假说 [J].应用生态学报,2022,33(11):3105-3115. HOUQC, FENGYL, ZHOUYJ, et al. Main hypotheses on mechanisms underlying plant invasion: A review[J]. Chinese Journal of Applied Ecology,2022,33(11):3105-3115.
- [2] KALISZ S, KIVLIN S N, BIALIC-MURPHY L. Allelopathy is pervasive in invasive plants [J]. Biological Invasions, 2021, 23(2); 367-371.
- [3] INDERJIT, SIMBERLOFF D, KAUR H, et al. Novel chemicals engender myriad invasion mechanisms [J]. New Phytologist, 2021, 232(3):1184-1200.
- [4] DRENOVSKY R E, GREWELL B J, D'ANTONIO C M, et al. A functional trait perspective on plant invasion [J]. Annals of Botany, 2012, 110(1):141-153.
- [5] 王黎,赵丹丹,张鸽香.遮阴对猫爪草光合特性及叶片解剖结构的影响[J].西北植物学报,2024,44(7):1055-1063. WANG L, ZHAO D D, ZHANG G X. Effects of shading on the photosynthetic characteristics and leaf structure of *Ranunculus ternatus* Thunb[J].Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(7):1055-1063.
- [6] 袁玺垒,王振山,贾小平,等.光周期调控植物开花分子机制以及CCT基因家族研究进展[J].浙江农业学报,2020,32(6):1133-1140.
 YUAN X L, WANG Z S, JIA X P, et al. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family [J]. Acta Agriculturae Zhejiangensis,2020,32(6):1133-1140.
- [7] ZHANG M, MING Y, WANG H B, et al. Strategies for adaptation to high light in plants [J]. aBIOTECH, 2024,5(3):381-393.

- [8] LIX, LIANG T, LIU H T. How plants coordinate their development in response to light and temperature signals-Free[J]. The Plant Cell, 2022, 34(3):955-966.
- [9] LIUF, FANWS, YANGJB, et al. Episodic and guaninecytosine-biased bursts of intragenomic and interspecific synonymous divergence in *Ajugoideae* (Lamiaceae) mitogenomes[J].New Phytologist, 2020, 228(3):1107-1114.
- [10] 李晓娜. 高温对华南 4 种入侵植物光合生理的影响[D]. 广州:广州大学,2017.

 LIX N. High temperature on the photosynthetic ecophysiological characteristics of four alien invasive plants in South China[D]. Guangzhou: Guangzhou University,2017.
- [11] 方龙香. 克隆整合对两种不同生态型喜旱莲子草入侵性的影响[D]. 江苏 镇江: 江苏大学, 2017. FANG L X. Effects of clonal integration on the invasiveness of two ecotypes of alternanthera philoxeroides (mart.) Griseb[D]. Zhenjiang, Jiangsu; Jiangsu University, 2017.
- [12] YI J H, WAN J L, TIELBÖRGER K, et al. Specialist reassociation and residence time modulate the evolution of defense in invasive plants: A meta-analysis [J]. Ecology, 2024, 105(3): e4253.
- [13] 魏巍,侯玉平,彭少麟,等.不同光照强度对入侵植物薇甘菊(Mikania micrantha)和飞机草(Chromolaena odorata)生长及生物量分配的影响[J].生态学报,2017,37(18):6021-6028.
 - WEI W, HOU Y P, PENG S L, et al. Effects of light intensity on growth and biomass allocation of invasive plants *Mikania micrantha* and *Chromolaena odorata*[J]. Acta Ecologica Sinica, 2017, 37(18):6021-6028.
- [14] KHATRI K, NEGI B, BARGALI K, et al. Trait plasticity: A key attribute in the invasion success of Ageratina Adenophora in different forest types of Kumaun Himalaya, India[J]. Environment, Development and Sustainability, 2024, 26(8):21281-21302.
- [15] 彭正东, 甘玉婷, 甘婉怡, 等. 白花鬼针草在入侵过程中的叶功能性状变化特点及其与环境因子的关系[J]. 生态学报, 2024, 44(21): 9862-9873.

 PENG Z D, GAN Y T, GAN W Y, et al. Changes of leaf functional traits and their relationship with environmental factors during the invasion of *Bidens alba*[J]. Acta Ecologica Sinica, 2024, 44(21): 9862-9873.
- [16] CHEN J H, CHEN S T, HE N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield [J]. Nature Plants, 2020, 6(5):570-580.
- [17] 盛阳阳,徐秀美,张巧红,等.光合作用碳同化的合成生物学研究进展[J].合成生物学,2022,3(5):870-883. SHENG YY, XUXM, ZHANGQH, et al. Advances in synthetic biology for photosynthetic carbon assimilation [J].Synthetic Biology Journal,2022,3(5):870-883.
- [18] 朱文杰,郑鸣洁,康瑜国.不同光照强度对三种藤本植物光合作用的影响[J].中国农学通报,2022,38(26):27-31.
 ZHU W J, ZHENG M J, KANG Y G. Effects of different light radiation intensities on photosynthesis of three

- vine plants [J]. Chinese Agricultural Science Bulletin, 2022, 38(26):27-31.
- [19] 闫小红,周兵,胡文海,等.干旱胁迫对入侵种大狼把草及本地伴生种山莴苣叶片光合特性的影响[J].植物研究,2016,36(6):931-941.
 - YAN X H, ZHOU B, HU W H, et al. Effects of drought stress on photosynthetic characteristics in leaves of invasive bidens frondosa and its native associated lactuca indica [J]. Bulletin of Botanical Research, 2016, 36(6):931-941.
- [20] YE Z P, LIU Y G, KANG H J, et al. Comparing two measures of leaf photorespiration rate across a wide range of light intensities [J]. Journal of Plant Physiology, 2019, 240:e153002.
- [21] MCMURTRIE R E, WANG Y P. Mathematical models of the photosynthetic response of tree stands to rising CO₂ concentrations and temperatures [J]. Plant, Cell and Environment, 1993, 16(1):1-13.
- [22] ARNON D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in *Beta vulgaris*[J]. Plant Physiology, 1949, 24(1):1-15.
- [23] VALLADARES F, WRIGHT S J, LASSO E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7):1925-1936.
- [24] LEE M R, BERNHARDT E S, VAN BODEGOM P M, et al. Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta-analysis[J].New Phytologist, 2017, 213(1):128-139.
- [25] 叶子飘,胡文海,闫小红.光系统 [[实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报,2016,40(11):1208-1217. YE Z P, HU W H, YAN X H. Comparison on light
 - response models of actual photochemical efficiency in photosystem II [J]. Chinese Journal of Plant Ecology, 2016, 40(11):1208-1217.
- [26] 双升普,张金燕,寸竹,等.光照强度驱动典型阴生植物三七的生理生态响应特征[J].生态学报,2022,42(9);3596-3612. SHUANG S P, ZHANG J Y, CUN Z, et al. Ecophysiological characteristics of a typically shade-tolerant species *Panax* notoginseng in response to different light intensities[J].Acta Ecologica Sinica,2022,42(9):3596-3612.
- [27] 黄一鑫,程艳霞.森林光环境对4种乔木幼树光合和光谱 反射特性的影响[J].生态学报,2022,42(22):9121-9129. HUANG Y X, CHENG Y X. Photosynthetic characteristics and spectral reflectance characteristics of four natural tree saplings under forest light environment [J]. Acta Ecologica Sinica,2022,42(22):9121-9129.
- [28] FENG Y L, WANG J F, SANG W G. Biomass allocation, morphology and photosynthesis of invasive and non-invasive exotic species grown at four irradiance levels[J]. Acta Oecologica, 2007, 31(1):40-47.
- [29] ZHENG Y L, FENG Y L, LEI Y B, et al. Comparisons of

- plastic responses to irradiance and physiological traits by invasive Eupatorium adenophorum and its native congeners [J]. Journal of Plant Physiology, 2012, 169(9):884-891.
- [30] WU A, TRUONG S H, MCCORMICK R, et al. Contrasting leaf-scale photosynthetic low-light response and its temperature dependency are key to differences in cropscale radiation use efficiency [J]. New Phytologist, 2024, 241(6):2435-2447.
- [31] LU Z L, HUANG F, ZHAO Y X, et al. Multi-area transboundary pollution problems under learning by doing in Yangtze River Delta Region, China [J]. Mathematical Methods in the Applied Sciences, 2021, 44(1):1029-1051.
- [32] 全先奎,王传宽.兴安落叶松对环境变化的物候驯化和 光合能力适应[J].生态学报,2015,35(13):4538-4546. QUAN X K, WANG C K. Acclimation of leaf phenology and adaptation of photosynthetic capacity of *Larix gmelinii* to environmental changes [J]. Acta Ecologica Sinica,2015,35(13):4538-4546.
- [33] MASLOVA T G, MARKOVSKAYA E F, SLEMNEV N N. Functions of carotenoids in leaves of higher plants (review) [J]. Biology Bulletin Reviews, 2021,11(5):476-487.
- [34] 李静.低温弱光下辣椒叶片中类胡萝卜素组分的变化及 其与品种耐性的关系研究[D]. 兰州:甘肃农业大学,2018. LI J. Study on the changes of carotenoid compositions in pepper (*Capsicum annuum* L.) leaves under low temperature and light and its relationship with the tolerance of varieties[D].Lanzhou: Gansu Agricultural University,2018.
- [35] 李立婷,张鸽香,苏同向,等.3种唇形科野生花卉在遮光下的光合特性变化及耐阴性评价[J].南方农业学报,2023,54(5):1436-1445.
 - LI L T, ZHANG G X, SU T X, et al. Photosynthetic characteristics changes and evaluation on shade tolerance of three kinds of *Lamiaceae* wild flowers under shading[J]. Journal of Southern Agriculture, 2023, 54(5):1436-1445.
- [36] 陈婷婷,符卫蒙,余景,等.彩色稻叶片光合特征及其与 抗氧化酶活性、花青素含量的关系[J].中国农业科学, 2022,55(3):467-478.
 - CHEN T T, FU W M, YU J, et al. The photosynthesis characteristics of colored rice leaves and its relation with antioxidant capacity and anthocyanin content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
- [37] BAMBACH N, U K T P, GILBERT M E. A dynamic model of RuBP-regeneration limited photosynthesis accounting for photoinhibition, heat and water stress [J]. Agricultural and Forest Meteorology, 2020, 285; e107911.
- [38] 周天骄,丁晓辉,王君晖.植物光呼吸途径的调控和优化 策略[J].浙江大学学报(农业与生命科学版),2020,46(3):271-279.
 - ZHOU T J, DING X H, WANG J H. Strategies for modulation and optimization of the photorespiration pathway in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3):271-279.