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摘要:油松作为我国北方地区典型的森林植被类型,研究辐射能量在其冠层中的分配、收支及传输,是构

建森林冠层辐射传输模型和生态过程模型的理论基础,对阐明森林植被群落中能量流动和物质循环机理

具有重要意义。基于贺兰山生态站油松林通量塔定位观测获取的上、下行长短波辐射、光合有效辐射

(photosyntheticallyactiveradiation,PAR)以及气象数据,分析2021年4—9月不同天气和季节条件下油松

林冠层的辐射能量截获及传输特征。结果表明:(1)晴天条件下太阳总辐射的日变化表现为光滑的“单峰”

曲线,但多云条件下则呈现不规则的“多峰”曲线,且减弱48.3%的太阳总辐射能量到达冠层顶部。(2)太
阳总辐射以下行短波辐射为主,晴天的上行短波辐射日变化虽也呈“单峰”形态,但仅占下行短波辐射的

8.1%,上行和下行长波辐射随昼夜交替略有波动。(3)太阳短波辐射的季节动态特征表明,上行和下行短

波辐射在6月最高,而上行和下行长波辐射在7月最高。(4)在冠层上方(25m处)呈规则“单峰”形态的

PAR日动态曲线,经过冠层截获和传输作用后,在冠层下方(7m处)变为不规则曲线;PAR的透过率为

32.2%~53.9%,透过率在6月达到最高。(5)4-9月生长季短波反射率为7.8%~8.8%,而地表长波辐射

收支比为0.73~0.80。结果显示,贺兰山油松林冠层对辐射能量有明显的截获作用,其辐射传输在不同天

气条件和不同季节表现出较大的差异。
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Abstract:PinustabulaeformisisatypicalspeciesintheforestofnorthernChina.Theresearchesonthe
distribution,budgetandtransmissionofradiantenergyofP.tabulaeformiscanopyarethetheoreticalbasis
forthebuildingradiationtransmissionmodelandtheecologicalprocessmodeloftheforestcanopy,whichare
crucialforexploringthemechanismofenergyflowandmaterialcirculationinforestcommunities.Basedon
theupwellinganddownwellingoflongwaveandshortwaveradiation,photosyntheticallyactiveradiation
(PAR)andmeteorologicaldataobtainedfromthefluxtowerovertheP.tabulaeformiscommunitiesin
Helan Mountainforestecosystem researchstation,theradiativeenergyinterceptionandtransmission
characteristicsoftheP.tabulaeformisforestcanopyundervariousweatherandseasonconditionsoverthe
periodofApriltoSeptember2021wereanalyzed.Theresultsshowedthat:(1)Undersunnycondition,the
diurnalvariationoftotalsolarradiationshowedasmoothcurvewithasinglepeak,butanirregularcurve



withmultiplepeaksundercloudycondition,andthetotalsolarradiationenergydecreasedby48.3%toreach
thetopofthecanopy.(2)Thetotalsolarradiationreachingthetopofthecanopywasdominatedbythe
downwellingshortwaveradiation.Althoughthediurnalvariationofupwellingshortwaveradiationshoweda
singlepeakcurveundersunnycondition,itonlyaccountedfor8.1%ofdownwellingshortwaveradiation.The
longwaveradiationofupwellinganddownwellingfluctuatedslightlywiththealternationofdayandnight.
(3)Theseasonaldynamiccharacteristicsofsolarshortwaveradiationrevealedthatbothupwellingand
downwellingshortwaveradiationwerethehighestinJune,whilethehighestupwellinganddownwelling
longwaveradiationappearedinJuly.(4)ThediurnalvariationofPARwasaregularsinglepeakcurveabove
thecanopy(25m),butbecameirregularbelowthecanopy(7m)afterinterceptionandtransmissionbythe
canopy.ThetransmissivityofPARrangedfrom32.2%to53.9%,andthehighestvalueappearedinJune.
(5)Theshortwavereflectancewasover7.8%~8.8%duringthegrowingseasonfromApriltoSeptember,

whiletheratioofincomingandoutgoinglongwaveradiationofsurfacerangedfrom0.73to0.80.Theabove
resultsshowedthattheP.tabulaeformiscanopyinHelanMountainhadalargeradiationinterceptioneffect,andthe
transmissionofradiationthroughthecanopychangedsignificantlyindifferentweatherconditionsandseasons.
Keywords:Pinustabulaeformisforest;radiantflux;reflectance;canopy;transmissivity

  森林生态系统具有调节气候、涵养水源、保持水

土、净化空气等功能[1],在全球陆-气间的碳平衡维

持、水分交换、能量分配以及缓解气候变化等方面发

挥着重要作用[2]。地表辐射能量收支是陆面过程研

究的重要内容,对于森林生态系统而言,太阳总辐射

决定森林植被的光合速率和生长发育过程,是植物生

长最重要的限制因子,而不同季节和不同天气条件下

的太阳总辐射差异是导致同类型森林发育状态出现

差异的重要原因[3],同时引起陆面能量供应不均,进
而影响森林生态系统的碳水循环过程。可见,开展森

林生态系统野外观测试验,研究其辐射能量收支过

程,对理解全球变化背景下的整个森林生态系统的能

量平衡和碳循环特征具有重要意义。
准确描述森林冠层的辐射能量截获及传输是当

前森林生态过程模拟的关键。在森林生态系统内部,
由于能量和物质的分配、收支与传输存在差异,不同

植被群落占据不同层位空间,其中乔木林冠层是森林

与外界环境交互最为密切的交流层面,通过对光的吸

收、透射和反射来控制林下植被所能获取的光合有效

辐射(photosyntheticallyactiveradiation,PAR),进
而影响林下植被的发育和多样性[4-5]。由于冠层结构

差异和林隙的不规则性增强林下生境的异质性,致使

不同高度植被可获得的辐射能量存在显著差异,不同

的冠层特征会形成不同的林内微生境,从而影响着林

下植物的更新和生长[6-7]。因此,开展冠层尺度的辐

射过程观测,获取先验知识,为了解林下植被与森林

冠层的相互作用提供科学依据,对研究森林生态系统

物质和能量循环过程至关重要。
目前,国内外学者[4,8-9]已开展大量关于森林冠层

辐射分布及传输方面的研究,尤为关注北方针阔混交

林和热带季雨林[10-11],但鲜有研究关注我国干旱半干旱

过渡区脆弱森林生态系统的冠层能量辐射截获和传输

特征。为此,本研究以位于我国温带草原与荒漠区的过

渡地带的贺兰山油松林为研究对象,基于生态站通量塔

定位观测获取的不同冠层高度的上下行长短波辐射、

PAR以及气象数据,分析油松林生长季的辐射传输过

程及能量分配格局,以期为干旱半干旱过渡带森林构

造合理的林分结构提供理论依据,也可为森林冠层辐

射传输模型和生态过程模型提供先验知识。

1 研究区概况与研究方法
1.1 研究区概况

研究区位于宁夏贺兰山国家级自然保护区(105°49'—

106°41'E,38°19'—39°22'N)的天然油松林内。贺兰

山位于我国温带草原与荒漠区的过渡地带,平均海拔

2000~3000m,不仅能够有效地阻挡腾格里沙漠入

侵,而且在区域可持续发展和生态平衡维持中扮演着

重要角色,是我国西北地区重要的生态屏障[12]。油

松(Chinesepine)作为北方干旱半干旱地区典型的松

属针叶树种,具有耐干旱、耐瘠薄、生长快、适应性强

等特点[13]。贺兰山天然油松林分布在海拔2000~
2350m范围的山地中,常成纯林,是贺兰山主要的森

林群落之一[14]。生态站所在的油松林区观测的2021
年平均气温为7.3℃,年降水量237mm,主要土壤类型

为灰褐土和灰钙土,冠层高度20m,森林郁闭度为0.3~
0.7,林内坡度范围0~60°,平均树龄75年,胸径12.59
cm,常伴有山杨(Populusdavidiana Dode)、杜松

(JuniperusrigidaSieb.etZucc.)、青海云杉(Picea
crassifoliaKom.)等乔木,林下有栒子(Cotoneaster
hissaricusPojark.)、小叶忍冬(Loniceramicrophyl-
laWilld.exRoem.etSchult.)等灌木,草本植物有苔
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草(CarexmuliensisNees.)、唐松草(Thalictrumaq-
uilegifoliumvar.sibiricumLinnaeus)、早熟禾(Poa
annuaL.)等[12,15-16]。

1.2 研究方法

1.2.1 辐射通量测定 为研究贺兰山油松林的能量

交换和碳水循环过程,宁夏贺兰山森林生态系统国家

定位观测研究站在苏峪口内的油松林区(38°45'42″
N,105°54'13″E)建设通量观测塔,塔基地面海拔

2089m,塔高30m。
辐射通量的测定依托油松林通量塔进行,利用四分

量辐射仪(CNR4,Kipp&Zonen,荷兰)对冠层上方(25m
处)的 上 行 长 波 辐 射(upwellinglongwaveradiation,

ULR)、下行长波辐射(downwellinglongwaveradiation,

DLR)、上行短波辐射(upwellingshortwaveradiation,

USR)和下行短波辐射(downwellingshortwaveradiation,

DSR)进行测定;利用PAR传感器(LI190R-L,LI-
COR,美国),对冠层上方(25m处)和冠下方(7m处)的
PAR进行观测;辐射强度指标以0.5h的频率记录期间

的PAR平均值,所有观测设备通过坎贝尔的数据采集

器(CR6,CSI,美国)进行存储和自动计算,观测时间为

2021年4—9月。

1.2.2 地表辐射能量分配与交换过程测定 地表辐

射按照波长和传播方向划分为 DSR、USR、DLR、

ULR,在物理意义上可分别对应太阳总辐射、反射辐

射、大气逆辐射和下垫面长波辐射。根据 USR和

DSR可计算出地表短波反射率(ρ)和地表长波辐射

收支比(γ),来说明不同波长能量的分配与交换过

程,主要计算公式[17]为:

ρ=(USR/DSR)×100% (1)

γ=DLR/ULR (2)
式中:ρ 为地表短波反射率(%);γ 为地表长波辐射

收支比;DSR、USR、DLR、ULR分别为下行短波辐

射、上行短波辐射、下行长波辐射和上行长波辐射。

1.2.3 林冠光合有效辐射的透过率测定 通过对比

冠层上方和冠层下方的PAR值,可以定量分析PAR
在林冠中的分配和利用效率,林冠PAR的透过率计

算公式[18]为:

λ=PARb/PARa (3)
式中:PARa 为冠层上方(25m处)的PAR(W/m2);

PARb 为冠层下方(7m处)的PAR(W/m2)。

1.2.4 晴空指数计算 晴空指数是指一定太阳高度

角下地表接受的太阳总辐射与地球大气层上方平行

于地表面上接受的太阳总辐射的比值[19]:

kt=S/Se (4)

Se=Ssc[1+0.033cos(360td/365)]sinβ (5)
式中:S为地表太阳总辐射(W/m2);Se为大气顶层太阳

总辐射(W/m2);Ssc为太阳常数(1370W/m2);td为日序

数;β为太阳高度角。当晴空指数kt>0.4为晴天,0<
kt<0.4为多云天。

1.2.5 数据处理 PAR传感器观测的数据是光合有

效量子的通量密度[μmol/(m·s)],为了便于将

PAR与其他辐射能量对比,本文利用董泰锋等[20]报

道的量子转换系数,将量子通量密度转换成单位为

W/m2的光合辐射度,公式为:

QPAR=UPAR/μ (6)
式中:UPAR为光合有效量子通量密度[μmol/(m·s)];

QPAR为光合有效辐射的辐射度(W/m2);μ 为量子转

换系数,取值4.55。根据油松的生长周期,选择生长

季初(4月)、生长季中(7月)和生长季末(9月)的月

内晴天进行冠层PAR的日变化研究,以冠层上(地
上25m高度)和冠层下(地上7m高度)的PAR差

异,分析油松林冠层对PAR的截获特征。
所有辐射观测数据由CR6数据采集器采集,并

记录0.5h内的平均值为1次原始观测数据,根据1
天内48次观测记录,求平均得出日尺度辐射数据,同
理用日尺度辐射数据求算月尺度辐射,后期计算处理

及制图在Excel2016软件中完成。

2 结果与分析
2.1 不同天气条件下太阳总辐射日变化特征

选择典型晴天(7月31日)与多云日期(7月11日),
分析不同天气条件下贺兰山油松林冠层接收到的太阳

总辐射特征。由图1可知,在晴天条件下,太阳总辐射

的日变化值表现为较光滑的“单峰”曲线,在5:00之前的

时间段太阳总辐射为0,日出后随着太阳高度角的增大,
太阳总辐射强度快速增强,在13:30太阳总辐射达到最

大值为626.55W/m2,午后太阳高度角下降,太阳总辐射

强度下降,在21:00日落之后降为0。在多云条件下,太
阳总辐射受云层影响严重,呈现出较强的波动性。由于

天气变化和云层的影响,即便是在太阳总辐射最强的正

午时刻,多云天的太阳总辐射亦可降低到150W/m2以
下,不及晴天同时刻的25%。但由于云层在早晚时

段对太阳光的折射、反射等作用,导致辐射仪接收到

视域之外的非太阳直射光,极端情况下引起早晚时段

多云天气条件下的太阳总辐射出现高于晴天太阳总

辐射的现象。从全天来看,多云天气能减弱48.3%的

太阳总辐射能量到达冠层顶部,可见天气条件对油松

林冠层辐射能量供给的影响巨大。

2.2 油松林冠层辐射特征及转化利用

2.2.1 冠层辐射日变化特征 图2为8月所有晴天的

辐射分量日变化,下行短波辐射日变化显著,表现为明

显的“单峰”曲线。下行短波辐射在日出后迅速升高,日
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间的最大峰值出现在13:00,为1017.87W/m2,随后开

始下降,在20:30降低至0。上行短波辐射与下行短波

辐射有相同的昼夜变化规律,均为日间“单峰”变化,夜
间降至为0,但上行短波辐射的日间峰值较低,最大值出

现在正午12:00,为72.75W/m2,日内平均值约占下行短

波辐射平均值的8.1%,即每日太阳短波辐射中有8.1%
的能量被油松反射回大气,无法被森林生态系统利用。
上、下行长波辐射都表现出白天略高于晚上的规律,
即白天的大气逆辐射(下行长波辐射)和下垫面长波

辐射(上行长波辐射)均高于夜间,这与大气和地表白天

温度高于夜晚有关。上行长波辐射为307.10~346.36
W/m2,下行长波辐射为385.25~457.69W/m2。

图1 不同天气条件下太阳总辐射的日变化

2.2.2 冠层辐射月变化特征及转化利用 贺兰山油

松林的短波辐射特征与该区域的森林生育过程一致

(图3),来自太阳的短波下行辐射最大值出现在6
月,为343.05W/m2,而同月的上行短波辐射也达到

28.91W/m2的年内最大;在4-9月的整个生长季

中,9月的上、下行短波辐射最低,但油松林冠层的短

波反射率却与短波上、下行反射量值的季节变化无关

(图3),在上、下行短波辐射较强的7月,地表短波反

射率却是最低,只有7.8%;而在短波能量最弱的9月,地
表短波反射率却达到最大的8.8%。从平均短波反射率

来看,贺兰山油松林生态系统吸收利用或转化的太阳

短波辐射能量高达90%以上,在4-9月整个生长季,
油松林冠层月平均接收短波辐射311.07W/m2,其中

25.73W/m2的短波辐射被直接反射出冠层,高达285.34
W/m2的短波能量被生态系统吸收用于碳水循环等生理

生态过程或被地表储存并转化为长波辐射。

图2 油松林冠层辐射日变化

  从季节来看,贺兰山油松林的上、下行长波辐射也

均在7月达到最大,分别为439.88,352.40W/m2,长波辐

射收支比达到0.8,也为生长季最高(图3)。从整体长波

能量平衡来看,贺兰山油松林冠层接收来自大气的下行

长波辐射总低于冠层向天空发射的长波辐射,油松林冠

层散失掉约20%~27%的长波能量,在4-9月生长季,
总共亏缺88.26W/m2的长波辐射能量。但因为森林冠

层能量过程较为复杂,吸收的太阳短波辐射加热土壤和

冠层后又转换成长波辐射向外发射,扣除长波损耗,
从全波段能量平衡来看,贺兰山油松林冠层在4-9
月生长季净吸收197.08W/m2能量。

图3 油松林冠层4种辐射月变化

2.3 油松林冠层光合有效辐射截获及透过特征

2.3.1 光合有效辐射的日变化及冠层截获特征 晴

天状态下,冠层顶部的PAR在日内成平滑的“单峰”
形态,最高值出现在太阳高度角最大的正午,在生长

季初期、中期和末期的日内PAR最大值分别为325.58,

346.74,286.58W/m2;而冠层下部的PAR在日内为

不规则的变化曲线,且随着太阳方位角的变化而

随机波动(图4)。不同生长季的冠层顶部和冠层下

部的PAR均表现为白天高于0,而夜间接近于0的

规律,但不同季节昼夜转换时间点不同,生长季初期

的20:30至次日6:00之间没有PAR,生长季中期则

为21:00至次日5:30之间,而生长季末期又延长至
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20:00至次日6:30之间,这与不同生长季的昼夜时

长变化一致。从PAR强度来看,生长季初的冠层顶部

的平均PAR为97.09W/m2,冠层下部为39.22W/m2,
冠层能截获59.6%的PAR;生长季中期冠层顶部的

平均PAR升高到110.18W/m2,冠层下部也升高为

54.39W/m2,但冠层仅截获50.6%的PAR;生长季

末期冠层顶部的平均PAR下降到77.48W/m2,冠层

下部则下降到17.26W/m2,而冠层则把高达77.7%的

PAR截获。从冠层顶部和冠层下部PAR日变化曲

线来看,生长季初、中期,冠层下PAR常会有零星的

波动高峰,即冠下在不同时刻可能有零星的强光斑透

过并引发冠下PAR升高。但到生长季末期,冠层在

日内则能较均一地截获PAR。

图4 油松不同生长阶段的冠层PAR日变化

2.3.2 光合有效辐射的月变化及其冠层透过率 贺

兰山油松林冠层对PAR的吸收比例存在季节性差

别(图5)。在晴天条件下,冠层上的PAR均高于冠

层下的PAR,在4-9月的生长季内,PAR表现出先

增强后减弱的特征。PAR最高值出现在6月,其冠

层上和冠层下的PAR分别为116.2,73.1W/m2;9
月的PAR最弱,其冠层上和冠层下的PAR分别为

77.5W/m2和17.3W/m2,PAR的变化规律与贺兰山所

在地区的年太阳短波辐射年变化有关。在4-9月的

生长季内,PAR的透过率为32.2%~53.9%,其季节

性变化规律与PAR的变化一致,表现为先增高后降

低的趋势,最高透过率出现在6月,即在6月林下植

被可以获得最大强度的PAR用于光合作用。

图5 冠层顶部、下部PAR及其透过率的月变化

3 讨 论
3.1 影响贺兰山油松林冠层辐射收入的因素

陆地表面可获得的太阳总辐射及日内、季节分配

特征,决定着陆地生态系统碳水循环的强弱,但不同

地区的太阳总辐射受控因素存在差异。一般情况下,
太阳高度角、大气透明度、云量均对太阳总辐射产生

影响,纬度、海拔、坡度、坡向等地理因素也对陆面太

阳总辐射的可获得性产生间接影响[21]。在晴天条

件,太阳高度角的变化是引起日内太阳总辐射(以短

波辐射为主)变化的最主要原因(图1),在太阳高度

角较低的早晚时刻,短波辐射较低,而在太阳高度角

最大的正午左右短波辐射出现峰值[22-23]。天山中段

雪岭云杉林区下行短波辐射在中午14:00出现日内

峰值[24];秦岭火地塘林区油松林下行短波辐射峰值

在13:00-13:30[25];南亚热带针阔混交林下行短波

辐射峰值也出现在13:00-13:30,但雨季和旱季略

有差异[26];贺兰山油松林区下行短波辐射峰值出现

在13:00,与上述研究结果较为一致。但多云条件

下,太阳总辐射的日变化规律表现出强烈的波动性,
其变化曲线为“多峰”形(图1),转而受控于云量变

化,这与刘俊[27]的研究结果相似;云层对太阳总辐射

具有吸收、反射、散射作用,使到达地面的太阳总辐射

减少[28],天空云量变化又影响瞬时太阳总辐射到达

地面的强度,产生日内波动特征;在早晚时刻,由于云

层对可见光的折射等作用,还导致多云条件下的太阳

总辐射大于同时刻晴天的太阳总辐射(图1)。相对

于太阳总辐射,下行长波辐射(大气逆辐射)较小,但
也是贺兰山油松林冠层辐射收入的一部分,大气逆辐

射与大气温度有关,其在昼夜间的变化不是很大(图
2),可源源不断地给油松林冠层和土壤带来热能。因
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大气受白天太阳总辐射的增温效应影响,也导致下行

长波辐射出现白天略高于夜间的规律[29]。
3.2 油松林冠层辐射能量转化与消耗规律

下行短波辐射到达油松林冠层后,最直接的一部

分消耗为通过地表反射返回天空,而影响冠层短波反

射的因素有林区地形特征和森林生长季相差异。本

研究所用的通量观测塔建在贺兰山朝西北向的山坡

上,受山地地形阴影的影响,下行短波辐射在偏午后

的时候达到峰值。经油松林冠层反射而出的上行短

波辐射,其不仅与下行短波辐射的日内波动有关,还
与地表反射的热点效应有关,在正午时刻太阳高度角

最大,此时太阳入射方向与四分量辐射仪的上行短波

辐射传感器的观测方向最为一致,产生1个反射峰

值,使得上行短波辐射达到最大值[30]。油松林冠层

以热辐射的形式向天空发射的长波辐射,其辐射能量

消耗规律与油松林冠层温度的变化有关,与大气逆辐

射一样,其也表现出白天略高于夜间的规律。
从季节来看,通过短波反射消耗的能量随森林季

相的变化而变化,7月达到最低后,开始逐月升高(图
3)。对于贺兰山油松林这种地被、灌木和乔木构成的

多层片结构植被群落,其反射率是多层片植被与地表

土壤共同反射的结果,地表反射率的季节性变化与不

同层植物叶片的生育过程直接相关,油松冠层叶片随

生长季扩展,引起油松冠上和冠下对短波能量反射占

比的变化,进而影响到陆表整体的短波反射率。这一

结果与孙雪峰等[31]得出的暖温带落叶阔叶林反射率

在6月最高的结果存在差异,落叶阔叶林地表反射率

的四季变化较其他植被类型显著,夏季冠层被浓密的

叶面覆盖,形成较大反射面[32],且6月的叶片叶绿素

含量较低,吸收太阳总辐射的能力弱,从而形成最高

的反射率[33]。依据林冠反射理论,林冠反射率与叶

子的反射率及叶面积系数成正比,与叶子的透过率成

反比[34]。贺兰山油松林在6-7月因季节性干旱抑

制生长,油松林叶面积系数低,透过冠层的短波辐射

量高;9月冠层的叶面积系数高而透过率低,导致该

月反射率达到最高。
3.3 影响油松林冠层光合有效辐射穿透的因素

冠层PAR透过率的大小决定油松林冠下植被

可获得光合能量的多少,冠层PAR透过率一般与冠

层郁闭度、油松生育期、叶片形态分布等生物因素和

林区地形等非生物因素有关。贺兰山油松林郁闭度

较低,一般在0.3~0.7,为中度郁闭林,其冠层存在间

隙,PAR可透过冠层,但又受控于太阳直射角度。当

某个角度有直射光通过林冠间隙穿透冠层时,冠层

下的PAR会急速上升;当某个角度直射光被冠层遮

挡较大时,冠层下的PAR则急速下降。贺兰山油松

林的这一PAR穿透冠层的规律,导致其冠下PAR
在日内出现随机跳动特征(图4)。从日内来看,往往

午前和午后时刻的冠层PAR的透光率较高,这段时

期太阳为升起或落下阶段,随着太阳高度角和方位角

的变化,生长在山地倾斜坡面上的油松林冠层在太阳

直射方向漏出空隙,使光斑容易通过林隙穿过冠层

到达冠下;而在正午太阳近直射的状态下,冠层PAR
的透光率变小,即该油松林冠层在正午有较强的遮光

效果。冠层PAR透过率也表现出明显的季节变化

规律(图5),生长季初和生长季中的PAR冠层透过

率较高,而生长季末的PAR冠层透过率降到最低,
主要是因为生长季末油松林针叶生长成熟,冠层发

育完全,冠层的叶面积达到最大,枝叶最为茂密,能
够吸收与反射掉最多的PAR,这与刘晓东等[35]得出

的杨树人工林PAR季节变化情况一致。从贺兰山

油松的生育期来看,其在4-5月生长旺盛,在6-7
月的初夏由于季节性干旱抑制生长,在8月后又加速

生长,这也是导致油松林5-7月冠层PAR透过率较

高的原因之一。此外,本研究的样地(38°45'42″N,
105°54'13″E)位于北回归线以北,其年内正午太阳高

度角最大值出现在6月,即6月油松林冠上的PAR
能达到最大,而贺兰山油松的生育期和气候特征决定

6月的冠层叶面积相对较低,冠层的吸收辐射较少,
透过率高,因此冠下PAR最大值也出现在6月。与

此不同,西双版纳热带季雨林冠层上PAR在2-3月

较高,冠层下PAR在11月和翌年2月较高[36],可
见,研究区地理、气候差异及树种生育期不同造成这

种截然不同的冠层PAR透过特征。

4 结 论
(1)太阳短波辐射日内呈“单峰”形态,且季节性

变化明显,是油松林冠层的主要能量来源,但受天气

状况影响明显,多云天气能减弱近1/2的太阳总辐射

到达冠层;下行长波辐射(大气逆辐射)亦可为冠层带

来热能,但冠层向天空辐射的上行长波能量更多,地
表长波辐射收支比为0.73~0.80。

(2)太阳总辐射到达油松林冠层后发生反射、透射、
吸收和转化等过程,其中7.8%~8.8%的短波辐射被反

射回天空,32.2%~53.9%的PAR透过冠层到达冠下,地
表吸收的短波能量除用于驱动碳水循环等植被生理生

态过程外,部分还被转化为长波辐射。
(3)太阳短波辐射季节变化驱动着冠层上PAR

和所有长波辐射的季节波动,由于油松林冠层对能量

截获和传输的复杂交互作用,使得冠层反射、透射特

征又与油松林的郁闭度、生育期等生物因子相关,且
在不同天气条件和不同季节表现出较大的差异。
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