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摘要:生态系统服务评估决定区域可持续发展,对人类福祉至关重要。以黄土高原为研究区域,基于

CASA、InVEST和RUSLE模型,结合土地利用类型、归一化植被指数、气象等数据,分析了2000年、2005
年、2010年和2015年的NPP、土壤保持和水源涵养3项关键生态系统服务的时空分布特征,识别了3种生

态系统服务的热点区,并基于相关系数法分析了黄土高原地区和不同气候区(干旱气候区、半干旱气候区、

高原气候区、半湿润气候区)不同生态系统服务间的权衡/协同关系。结果表明:(1)2000—2015年,黄土高

原地区的土地利用类型变化剧烈,其中林地(2.8%)和建设用地(43.1%)显著增加,耕地(-2.7%)明显减

少;(2)2000—2015年,净初级生产力(NPP)、产水量和土壤保持均呈现增长趋势,分别增加14.1%,5.3%
和101.3%;(3)黄土高原的4类热点区(非热点区、一类热点区、二类热点区、三类热点区)所占面积变化不显著,

分布具有明显的地带性,从西北到东南依次为非热点区、一类热点区、二类热点区和三类热点区;(4)在整

个黄土高原地区,土壤保持与NPP、水源涵养之间为协同关系,NPP与水源涵养为权衡关系;在4个气候

区,NPP与土壤保持之间的权衡/协同关系与黄土高原地区一致,但土壤保持和水源涵养在半干旱气候区

和半湿润气候区呈权衡关系,NPP与水源涵养在高原气候区和半湿润气候区为协同关系。为促进区域生

态系统可持续管理,应在土地规划过程中考虑生态系统服务之间的相互关系,尽可能减少权衡,增加协同。
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Abstract:Ecosystemservicesassessmentsdetermineregionalsustainabledevelopmentandarecriticalto
humanwell-being.ThisstudytooktheLoessPlateauastheresearcharea,basedontheCASA,InVESTand
RUSLEmodel,combinedwiththedataoflandusetypes,normalizedvegetationindex,meteorologyandso
on,analyzedthespatialandtemporaldistributioncharacteristicsofthethreekeyecosystemservices(NPP,

soilconservation,andwaterconservation)in2000,2005,2010and2015;andidentifiedthehotspotsof
threeecosystemservices,analyzedthetrade-offsbetweendifferentecosystemservicesontheLoessPlateau
anddifferentclimaticregions(arid,semi-arid,plateauandsemi-humidclimatezone)basedonthecorrelation
coefficientmethod.Theresultsshowed:(1)From2000to2015,landusetypesintheLoessPlateauregion



changeddrastically,amongwhichforestland(2.8%)andconstructionland(43.1%)increasedsignificantly,

andcultivatedland(-2.7%)decreasedsignificantly.(2)From2000to2015,alltheaverageunitareaofnet
primaryproductivity(NPP),waterconservationandsoilconservationshowedanincreasingtrend,increased
by14.1%,5.3%and101.3%respectively.(3)TheareasoccupiedbythefourtypesofhotspotsintheLoess
Plateau(non-hotspots,first-typehotspots,second-typehotspots,andthird-typehotspots)hadnotchanged
significantly,butthedistributionhadtheobviouszonaldistribution,thatwasnon-hotspots,first-class
hotspots,second-classhotspots,andthird-classhotspotsrespectivelyfromnorthwesttosoutheast.(4)Acrossthe
LoessPlateau,therewasasynergisticrelationshipbetweensoilconservationandNPP,soilconservationandwater
conservation.Andtherewasatrade-offbetweenNPPandwaterconservation.However,soilconservationandwater
conservationwastrade-offinsemi-aridandsemi-humidregions,andtherelationshipbetweenNPPandwater
conservationalsowastrade-offinaridandsemi-aridregions.Inordertopromotethesustainablemanagementof
regionalecosystems,therelationshipsbetweenecosystemservicesshouldbeconsideredinthelandplanning
process,andtrade-offsshouldbeminimizedandsynergiesshouldbemaximized.
Keywords:ecosystemservices;carbonsequestration;NPP;waterconservation;trade-offsandsynergies

  生态系统服务(ecosystemservice,ES)指人类

从生态系统获得的各种惠益[1]。全球经济和人口的

迅速增加导致人类对自然资源和环境过度利用,对生

态系统服务的需求不断增加[2-3]。千年生态系统服务

评估报告[4]指出,全球约60%的生态系统服务呈现

退化趋势,严重影响人类福祉,直接威胁生态环境的

可持续发展。生态系统的承载力有限,当人类对生态

系统的开发利用超过一定限度时,会导致全球变暖、
荒漠化加剧、水资源短缺等一系列环境问题[5]。因

此,对生态系统服务研究有助于决策者管理多功能生

态系统,实现区域可持续发展。
黄土高原是世界上水土流失最严重的地区之一,

过度砍伐和耕作、地形陡峭、土壤沙化和夏季的高强

度降雨造成该地区的生态环境退化[6]。为了防治水

土流失,改善生态环境,自20世纪末,黄土高原实施

了大规模的退耕还林(草)工程[7]。由此导致的土地

利用方式的改变必然对生态系统服务及其权衡/协同

关系产生重要的影响[8]。目前,针对黄土高原地区生

态系统服务的研究,在内容方面,主要集中在土壤保

持[9]、碳固持、水源涵养[10]等方面,或者评估土地利

用变化[11]、植被覆盖度[12]、降雨、地形[13]等因子对生

态系统服务的影响[14];在研究尺度方面,多在小流

域[15]、样带[16]和县市[17]等中小尺度。基于整个黄土

高原地区的多种生态系统服务间权衡/协同关系的研

究较少。因此,在退耕还林(草)等生态工程实施的大

背景下,亟于开展黄土高原地区多种生态系统服务的

时空分布特征及其权衡与协同关系研究。
基于以上问题,本文基于黄土高原地区2000年、

2005年、2010年和2015年的土地利用、气象、土壤属性、
植被类型、归一化植被指数(normalizeddifferencevege-
tationindex,NDVI)等数据,利用RUSLE、CASA、In-

VEST等生物物理模型评估了土壤保持、水源涵养和

NPP等3种生态系统服务的时空变化,并分析了生态

系统服务间的权衡/协同关系;同时,采用空间叠置分

析法分析了生态系统服务的热点区域,并揭示不同区

域服务供给能力的强弱,以期为指导黄土高原地区生

态恢复和管理提供理论依据和数据支撑。

1 材料与方法

1.1 研究区概况

黄土高原地区位于我国中部偏北部(图1),是世

界黄土分布最集中、面积最大的地区之一,总面积约

64万km2,约占我国领土面积的6.5%,覆盖陕西、山
西、河南、宁夏、甘肃、青海和内蒙7个省(自治区)。
地形复杂,内有盆地、高原、丘陵和沟壑,海拔介于60~
5200m。该区的气候属于大陆性季风气候,年均气

温6~14℃,年均降水量200~700mm,约有70%的

降雨发生在6—9月。植被类型从西北到东南依次为

干旱荒漠、温带草原和落叶阔叶林。按照自然条件相

对一致、县级行政区相对完整原则,黄土高原地区可

划分为4个气候区,分别为高原气候区、干旱气候区、
半干旱气候区和半湿润气候区。

1.2 数据来源与处理

本文需要的数据主要包括土地利用/覆被数据、
气象数据、DEM 数据、土壤数据和归一化植被指数

(NDVI)数据5类:(1)2000年、2005年、2010年、

2015年的土地利用数据(1km)来源于中国科学院资

源环境数据中心(http://www.resdc.cn);(2)气象数

据来源于中国气象数据网(http://data.cma.cn)提供

的黄土高原305个气象站点的逐日降雨量、平均气温

和日太阳总辐射数据,基于此,本文利用普通克里金

插值获取2000年、2005年、2010年、2015年的黄土
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高原地区气象数据;(3)DEM 数据(90m)来源于地

理空间数据云(http://www.gscloud.cn/);(4)土壤

数据(1km)来源于寒区旱区科学数据中心(http://

westdc.westgis.ac.cn/),包含土壤质地、土壤有机碳

含量、植物可利用含水量、根系深度等数据;(5)2000
年、2005年、2010年和2015年的NDVI数据(1km)
来源于美国地质调 查 局(http://ladsweb.nascom.
nasa.gov/data/)。

图1 黄土高原地形

2 研究方法
2.1 生态系统服务定量评估

2.1.1 水源涵养 黄土高原水资源匮乏,生态系统

产水服务与人类福祉息息相关,水资源是限制该地区

经济和农业发展的重要因素之一。有研究[18]表明,
水源涵养与产水量为正相关关系,InVEST模型的

wateryield模块基于水量平衡原理评估栅格单元的

产水能力,能够较好地反映生态系统的水源涵养能

力。因此,本文采用InVEST模型的 wateryield模

块估算黄土高原地区的水源涵养量,计算公式为:

Y(x)=(1-
AET(x)
P(x)

)P(x) (1)

式中:Y(x)为栅格单元x 的年产水量(mm);AET(x)为
第x个栅格单元的年实际蒸散量(mm);P(x)为栅格

单元x 的年降雨量(mm)。

2.1.2 NPP 植物净初级生产力(netprimarypro-
ductivity,NPP)是判定生态系统碳循环的重要因

子[18]。本研究采用CASA模型[19]估算研究区NPP,
公式为:

NPP(x,t)=APAR(x,t)×ε(x,t) (2)

APAR(x,t)=SOL(x,t)×FPAR(x,t)×0.5 (3)

ε(x,t)=Tε1(x,t)+Tε2(x,t)+Wε(x,t)×εmax (4)
式中:NPP(x,t)为像元x 在t月的净初级生产力

(g/m2C);APAR(x,t)为像元x 在t月的光合有效辐

射;ε(x,t)为像元x 在t月的实际光利用率(g/MJ);

SOL(x,t)为像元x 在t月的太阳总辐射(MJ/m2);

FPAR(x,t)为像元x在t月植被层对入射光合有效辐

射的吸收比例(无单位);Tε1(x,t)为低温对光利用率的

胁迫作用;Tε2(x,t)为高温对光利用率的胁迫作用,无
量纲;Wε(x,t)为水分胁迫影响系数,无量纲;εmax为植

被在理想状态下的实际光能利用率(g/MJ)。

2.1.3 土壤保持 黄土高原是世界上水土流失最严

重的地区之一,研究土壤保持对该地区意义重大。本

研究采用修正的通用土壤流失方程(RUSLE模型)
估算土壤保持服务。其计算公式为:

   Am=RKLSCP (5)

   Ap=RKLS (6)

   Ac=Am-Ap (7)
式中:Am 为年平均实际土壤侵蚀模数(t/hm2);Ap

为年平均潜在土壤侵蚀模数(t/hm2);Ac 为年平均

土壤保持(t/hm2);R 为降雨侵蚀力系数,采用 Wis-
chmeier等[20]提出的月尺度公式计算;K 为土壤侵

蚀力系数,采用国家系统科学数据中心的黄土高原

30m分辨率土壤可蚀性因子数据集;L 为坡长系数;

S 为坡度系数;坡长和坡度系数采用国家系统科学数

据中心的黄土高原地区90m分辨率的坡长因子和

坡度因子;C 为植被覆盖与管理因子;P 为水土保持

措施因子。

2.2 生态系统服务热点区识别及权衡关系分析

借助ArcGIS10.2.1软件,采用空间叠置分析法

识别黄土高原生态系统服务热点区,获得2000—

2015年生态系统服务热点分布图。对某栅格单元超

过黄土高原地区当年NPP、水源涵养、土壤保持3种

生态系统服务平均值的区域定义为热点区域[21]。其

中,若栅格单元的3个生态系统服务均没有超过各自

的平均值,这个栅格单元则为0类热点区;若有1个

服务超过其平均值,则为1类热点区;以此类推,分别

为2类和3类热点区。
通过相关性分析评估生态系统服务之间的权衡/

协同关系,运用SPSS软件对2种不同生态服务进行

相关性分析,若2种服务的相关系数为正,这2种服

务为协同关系;反之,则为权衡关系。

3 结果与分析
3.1 土地利用格局时空变化

研究获取了黄土高原地区2000年、2005年、

2010年和2015年各类土地利用面积。结果表明,

2000—2015年黄土高原地区林地、建筑用地和水域

的面积呈不同程度的增 加,其 中 林 地 增 加2626
km2,增幅为2.8%;建筑用地增加41%;耕地、草地与

未利用地呈不同幅度的减少,分别减少2.8%,0.6%
与1.5%(表1)。
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表1 2000-2015年黄土高原土地利用变化面积统计

单位:km2

土地利用

类型
2000—2005年 2005—2010年 2010—2015年 2000—2015年

耕地 -2228 -2171 -1264 -5663
林地 2035 570 84 2626
草地 -1000 309 -1113 -1804

水域 105 -32 241 310
建筑用地 1194 578 3434 5206

未利用地 -102 743 -1319 -678

  2000—2015年,黄土高原土地利用类型的空间

分布格局基本保持不变。以2015年为例,耕地(约

31%)主要分布在半湿润气候区东南部、半干旱气候

区东部(图2);林地(约15%)主要分布在半干旱半湿

润气候区过渡带及半湿润区东南部;草地(约41%)
主要分布在半干旱气候区(图2)。由于退耕还林

(草)工程的实施,干旱、半干旱和半湿润气候区的林

地面积均呈增加趋势,其中干旱气候区和半干旱气候

区的林地面积显著增加,分别增加452,1995km2,
高原气候区基本保持不变;干旱气候区、半干旱气候

区、半湿润气候区和高原气候区耕地面积均有不同程

度的减少,分别减少399,2676,2449,145km2,主要

被林地取代。值得注意的是,4个气候区的建筑用地

面积均大幅度增加,涨幅处于20%~50%。

图2 2000-2015年黄土高原土地利用空间分布

3.2 生态系统服务时空分布格局

2000年、2005年、2010年和2015年黄土高原地

区的NPP、土壤保持和水源涵养3种生态系统服务

的单位面积平均值均呈增长趋势。NPP的单位面积

平均值增幅为14%;土壤保持的单位面积平均值由

2000年的6.2t/hm2增加到2015年的12.4t/hm2,
增加显著,增幅为101.3%;水源涵养在4个时期的单

位面积平均值分别为77.1,84.7,94.1,81.7mm,呈波

动增长趋势(表2)。

NPP空间格局在2000—2015年间变化较大,

2000年NPP的高值区主要分布在半湿润气候区和

高原气候区,2015年半干旱气候区NPP高值所占面

积明显增加(图3);从变化量来看,高原气候区的

NPP单位面积平均值总体下降,其他3个气候区均

有不同程度的增加,增量较高的区域主要分布在半湿

润气候区(90.4g/m2C)和半干旱气候区(58.8g/m2

C)(图4)。2000年和2015年土壤保持空间格局基

本稳定,大致呈现中间高、四周低的分布态势,高值区

主要分布在半干旱半湿润气候区过渡带和高原气候

区(图3);变化量的空间分布格局同土壤保持基本相

似,增值较大的区域主要分布在半干旱半湿润气候区

过渡带和半湿润气候区东南部(图4)。2000—2015
年间水源涵养的空间格局变化明显,半湿润气候区水

源涵养高值区所占面积逐年缩小,半干旱气候区产水

量较高值所占面积逐年增大(图3);从变化量来看,

2000—2015年高原气候区(-38.4mm)和半湿润气

候区(-0.8mm)的水源涵养单位面积平均值呈下降

态势,干旱(9.3mm)和半干旱气候区(12.4mm)的水

源涵养单位面积平均值呈上升趋势(表2),其中半湿

润气候区西南部、干旱气候区和半干旱气候区的水源

涵养增加显著,干旱半干旱气候区的增值区主要分布

在土地利用类型为未利用地的区域(图4)。
表2 2000-2015年黄土高原地区生态系统服务变化量

调查年份

干旱气候区

NPP/

(g·m-2C)
土壤保持量/

(t·hm-2)
水源涵

养量/mm

半干旱气候区

NPP/

(g·m-2C)
土壤保持量/

(t·hm-2)
水源涵

养量/mm

高原气候区

NPP/

(g·m-2C)
土壤保持量/

(t·hm-2)
水源涵

养量/mm

半湿润气候区

NPP/

(g·m-2C)
土壤保持量/

(t·hm-2)
水源涵

养量/mm

黄土高原地区

NPP/

(g·m-2C)
土壤保持量/

(t·hm-2)
水源涵

养量/mm
2000—2005 -37.63 -0.35 -7.31 -37.63 -2.16 9.84 5.86 0.87 49.56 -25.19 0.84 4.21 -31.58 -0.70 7.59

2005—2010 37.21 0.20 14.07 39.79 4.03 8.65 24.74 1.09 -28.00 39.79 4.24 21.14 31.35 3.28 9.38

2010—2015 2.67 0.22 2.53 58.69 3.90 -6.27 -12.49 -1.53 -59.92 90.84 6.03 -26.13 55.39 3.65 -12.59

2000—2015 2.24 0.06 9.29 58.74 5.77 12.23 -14.73 0.44 -38.35 90.39 11.11 -0.77 55.16 6.23 4.38

3.3 生态系统服务热点区域分布

非热点区和一类热点区主要分布在干旱半干旱气

候区,其分布地区的土地利用类型大多为未利用地和草

地;二类和三类热点区主要分布在半湿润气候区和高原
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气候区,其中二类热点区的土地利用类型大多为草地和

耕地,三类热点区的主要土地利用类型为林地。2000—

2015年,非热点区所占的面积比分别为31%,35%,34%
和33%,呈波动上升的趋势。一类热点区在4个年份的

面积百分比分别为30%,26%,28%和29%,在2000—

2010年有所下降,2010—2015年开始回升,呈波动下降

态势;二类热点区所占百分比分别为29%,25%,27%和

28%,在2000—2005年有所下降,2005—2015年则持续

上升趋势,一类和二类热点区的下降比例均较小;3类热

点区在4个年份所占的比例分别为10%,13%,11%和

10%,先增加后减少,所占面积基本保持不变。整体来

看,非热点区所占面积略有增加,一类和二类热点区

所占面积略有减小,三类热点区所占面积则相对比较

稳定(图5)。

图3 2000-2015年黄土高原生态系统服务空间分布

图4 2000-2015年黄土高原生态系统变化量空间分布

图5 2000-2015年黄土高原生态系统服务热点区分布

3.4 不同尺度的生态系统服务权衡/协同关系

以2015年生态系统服务之间的权衡/协同关系

为例,对黄土高原地区来说,NPP与土壤保持(显著

正相关)、水源涵养与土壤保持之间为协同关系,NPP

与水源涵养之间为权衡关系(显著负相关)(表3)。
对不同气候区来说,NPP与土壤保持服务在4个气

候区均为协同关系,且呈显著正相关;但NPP与水源

涵养仅在半湿润气候区和高原气候区为协同关系;土
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壤保持与水源涵养在干旱气候区和高原气候区为协

同关系,在半干旱气候区和半湿润气候区则为权衡关

系(表4)。
表3 2015年黄土高原生态系统服务相关系数

生态系统服务 NPP 水源涵养 土壤保持

NPP 1 -0.32** 0.51**

水源涵养 1 0.57
土壤保持 1

  注:“**”表示在0.01水平上显著相关。下同。

表4 2015年黄土高原不同气候区生态系统服务相关系数

气候区 NPP—土壤保持 NPP—水源涵养 水源涵养—土壤保持

干旱气候区 0.48** -0.36 0.09
半干旱气候区 0.48** -0.02 -0.05
半湿润气候区 0.33** 0.22** -0.04
高原气候区 0.41** 0.34** 0.04

4 讨 论
4.1 黄土高原地区生态系统服务的时空动态变化

随着生态恢复,植被覆盖度显著增加是提高生态

系统碳固持能力的重要原因,且从长期来看,碳储存

量与恢复年限呈显著正相关[22]。干旱气候区、半干

旱气候区和半湿润气候区的林地所占面积在15年间

均有所增加,但干旱气候区的NPP基本保持稳定,半
湿润和半干旱气候区NPP增长显著,主要原因是半

湿润地区植被经过多年生长,有较强的碳固持能

力[23];半干旱地区林地显著增加,增强了该地区的碳

固持能力[24];干旱气候区的林地面积虽然明显增加,
但由于该地区气候干旱、植被稀疏,沙漠生态系统占

比大,植被恢复困难,故该区域的碳固持能力增长速

度也较慢[25]。15年间,4个气候区的土壤保持服务

均有所增加,这说明退耕还林(草)工程对土壤保持功

能有明显的促进作用;增值较大的区域主要分布在半

干旱半湿润气候区过渡带,原因是该地区地势平坦,
林地覆盖度增加,林地有较强的冠层截留作用,有利

于土壤保持[26]。干旱气候区的土壤保持量增值较

小,主要是由于该区域土壤结构疏松、气候干旱,植被

恢复困难[22]。另外,黄土高原地区自实施退耕还林

(草)等生态恢复工程后,土地受到的人为干扰降低,
土壤稳定性提高,这也是土壤保持功能提高的主要原

因之一[3,27]。黄土高原地区单位面积水源涵养量平

均值由2000年的77.1mm 增长至2015年的81.5
mm,其中干旱和半干旱气候区呈上升趋势,半湿润

气候区和高原气候区呈下降趋势。在半干旱气候区,
林地通过吸收深层土壤水分提供树木蒸腾作用,而相

当一部分林地所吸收的水分则凝结成靠近林地的降

雨,从而增加降水,提高水源涵养[28];干旱气候区水

源涵养量增加的主要原因是15年间该地区降雨量增

加,植被稀疏,耗水较少[29];在半湿润气候区,大规模

的造林增加蒸散量,从而导致该区域径流量下降,水
源涵养量减少[30];高原气候区的高海拔、强蒸散量使

得植被耗水增加,加上降雨量减少,共同导致该地区

水源涵养量大幅度下降。另外,黄土高原4类热点区

所占比例变化较小的原因可能是虽然该地区的土地

利用方式变化剧烈,但其整体变化比例较小。

4.2 黄土高原生态系统服务的驱动因素

土地利用变化和人类活动是影响生态系统服务

的关键因素[31]。2000—2015年,黄土高原单位面积

NPP的平均值整体呈增加趋势,这一方面与该期间

黄土高原地区的降水量呈增加态势有关,因为降水量

与植被NPP存在显著的正相关关系[32];另一方面,
与植被恢复的时间关系较大,通常植被的生产力与恢

复年限呈正相关,尤其是在生态恢复工程实施的早期

阶段[33]。对整个黄土高原地区来说,NPP的空间分

布格局由西北向东南递增,这是由降水量、气温、地
形、植被覆盖方式等因子共同决定的。本研究表明,
海拔较低的半湿润地区NPP相对较高,而海拔较高

的干旱和半干旱气候区NPP反而较低,这是由于半

湿润气候区森林覆盖度高,固碳能力强[31],干旱和半

干旱地区的土地利用类型多为未利用地和草地等固

碳能力较弱的土地类型;但同样高海拔的高原气候

NPP值却较高,这是由于高原气候区太阳辐射量充

足,能够促进光合作用。
黄土高原地区的土壤保持量呈现“四周低,中间

高”的分布态势,这与该地区坡度的分布基本吻合,表
明坡度对土壤保持的影响较大,因此,在生态修复过

程中,需加强坡地植被的保护。干旱气候区的土壤保

持量(0.71~0.78t/hm2)极小,是由于该地植被覆盖

度稀疏,荒漠化严重,应结合当地情况,种植适宜该地

的梭梭(Haloxylonammodendron)、沙棘(Hippo-
phaerhamnoidesLinn.)等植物,增强该地的土壤保

持能力[34]。从2000年到2015年,黄土高原地区土

壤保持量的单位面积平均值增长了101.3%,其中半

干旱地区和半湿润地区增长显著,分别增加5.8,11.2
t/hm2,而干旱气候区和高原气候区基本保持基本不

变,其原因主要是半干旱和半湿润气候区植被覆盖

度、降雨量在此期间呈现增长趋势,降水量主要通过

影响降雨侵蚀力大小影响土壤保持功能[4,29]。
黄土高原地区水源涵养的低值主要分布在干旱气

候区和高原气候区,高值主要分布在半干旱气候区和半

湿润气候区。这主要是因为半干旱气候区和半湿润气

候区的降雨量相对较高,2个气候区都处于低海拔区,蒸
散量也较低,干旱气候区海拔低但降雨量稀少,降雨量

和蒸散量是量化产水量的重要参数[35]。高原气候区产
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水量较低的原因是该地区海拔高,日照充足,故蒸散量

大于其他地区。值得注意的是,干旱气候区中部的产水

量值较高,主要是由于该区域土地利用类型为未利用

地,受到的人为干扰小,表面形成一层物理结皮,不利

于水分入渗,从而形成径流,增加产水量[36]。

4.3 生态系统服务权衡/协同关系的驱动因素

尺度大小的改变可能会增强、逆转或减弱生态系

统服务之间的权衡/协同关系[37]。在整个黄土高原

地区,土壤保持与NPP为协同关系,这与Su等[35]的

研究结果一致,其原因为植被覆盖度的增加会提高固

碳能力,同时也减少雨水对土壤的侵蚀,增加土壤保

持能力。郝梦雅等[38]研究认为,土地利用是影响土

壤保持与NPP呈权衡关系的主要因素;土壤保持与

水源涵养之间为协同关系,可能是因为其类似的生物

物理联系和土壤水文过程。在土壤保持方面,砂粒、
黏粒、粉粒和有机质含量共同影响土壤的抗侵蚀能

力[39],对于产水功能,砂粒、黏粒、粉粒和有机质含量

共同影响植物可利用含水率[40];然而,由于退耕还林

(草)工程实施以来植被恢复的差异,土壤保持与水源

涵养之间可能存在“权衡”关系[41]。如在半干旱气候

区和半湿润气候区,土壤保持与水源涵养为权衡关

系。NPP与水源涵养为“权衡”关系,主要因为NPP
是由光合作用和植物生产力共同决定的,与太阳辐射

量和植被的光利用效率有关,取决于温度和水分的限

制,产水量是除蒸散和地面补给的降水部分,大量植

树造林会导致水资源浪费[42]。
在不同气候区,土壤保持与水源涵养、NPP与水

源涵养之间的权衡/协同关系和黄土高原尺度的生态

系统服务间的关系有所不同,表明生态系统服务之间

的关系具有尺度依赖性。在干旱和半干旱气候区,

NPP和水源涵养之间为权衡关系的主要原因是干旱

半干旱地区的草地具有较高的固碳能力,但该地区的

降水水量稀少。半湿润和半干旱气候区产水和土壤

保持之间为权衡关系是由于该地区的耕地和建设用

地占比较大,土质相对疏松,容易发生水土流失。总

体而言,在大区域尺度上,气候(降水、气温、辐射等)、
地形(海拔、坡度)和植被覆盖类型是影响生态系统服

务间权衡/协同关系的主要因子;在相对小的尺度上,
其主要影响因子为土地利用方式和管理措施等。

4.4 展 望

结合黄土高原地区土地利用现状和生态系统服

务分布,为了后续黄土高原土地资源可持续利用,提
出建议:(1)自退耕还林工程实施之后,黄土高原的林

地面积增加较为迅速,根据黄土高原土地利用分布

图,其东南部的林地占比较大,但西北部的林地很少,
在后期造林过程中,应加强黄土高原西北部的植树强

度;(2)耕地应该特别加强管理,不能无节制的复垦,
防止耕地出现较明显的土地退化而造成水土的进一

步流失;(3)本研究发现,黄土高原地区的NPP与水

源涵养为权衡关系(显著负相关),这是由于该地区的

水资源不足,植树造林消耗水资源,所以政府部门在

今后的植被恢复过程中,需优先考虑耗水较少的物

种;(4)各个地区的自然环境不同,其所需要的关键生

态系统服务也不同,故相关部门在指定决策时,应当

结合该地区的具体条件,筛选出最有利于该地区生态

和经济协调发展的生态系统服务,并加强功能区域;
(5)研究期间,建筑用地的面积迅速增加。在兼顾经

济发展的条件下,应当尽可能地限制建筑用地的增加

以保护环境,如明确宅基地、合理规划未利用地等。

5 结 论
2000—2015年黄土高原地区林地面积增加2.8%,

耕地、草地和未利用地面积分别减少2.7%,0.6%和

1.5%;2000—2015年黄土高原NPP、土壤保持和水源涵

养的平均值分别增加14.1%,101.3%和5.6%;在黄

土高原地区,NPP与土壤保持、水源涵养与土壤保持

之间为协同关系,NPP与水源涵养之间为权衡关系;
但NPP与水源涵养在高原气候区和半湿润气候区为

协同关系,土壤保持与水源涵养在半干旱气候区和半

湿润气候区为权衡关系。总体而言,在大区域尺度

上,气候(降水、气温、辐射等)、地形(海拔、坡度)和植

被覆盖类型是影响生态系统服务间权衡/协同关系的

主要因子;在相对小的尺度上,其主要影响因子为土

地利用方式和管理措施等。
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