气候变化下生物多样性模拟不确定性的定量分解
CSTR:
作者:
作者单位:

作者简介:

程盈盈(2001-),女,硕士研究生,主要从事物种分布模型研究。E-mail:cyy05@nwafu.edu.cn

通讯作者:

中图分类号:

Q948.1

基金项目:

国家自然科学基金项目(31971488);国家重点研发计划项目(2017YFC0504601);生态环境部生物多样性与生物安全重点实验室开放基金课题项目


Quantitative Decomposition of Uncertainty in Biodiversity Simulation under Climate Change
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]探究整合物种分布模型(SDMs)、大气环流模式(GCMs)和共享社会经济路径(SSPs)在预测未来生物多样性变化中的不确定性贡献率分解与制图,为理解生物多样性变化的不确定性来源及保护管理决策提供依据。[方法]选取3种常用的SDMs,并结合8个关键气候变量,为10个植物种构建生态位模型。采用受试者工作特征曲线下面积(AUC)对模型表现进行评估。将严格验证的生态位模型投射至由5种GCMs与4种SSPs组合而成的未来气候变化情境框架下,系统模拟黄土高原60种不同情景下的生物多样性分布图谱(3种SDMs×5种GCMs×4种SSPs,2060—2080年)。采用三因素方差分析技术,对不确定性进行精确的定量化,运用ArcGIS软件将不同组分的不确定性制图。[结果] 3种SDMs开展模型构建工作时,对10个物种进行模拟得到的AUC平均值均高于0.8,达到非常精确水平。在模拟未来生物多样性的过程中,不同SDMs、GCMs及SSPs组合情景的预测结果间,存在较为显著差异,其平均变异率高达34%。就不确定性来源的贡献率而言,SDMs和GCMs对不确定性的贡献占比约为60%,远超SSPs对生物多样性模拟所带来的不确定性。[结论]综合考虑SDMs、GCMs和SSPs的不确定性差异,对于应对气候变化和保护生物多样性至关重要。引入的不确定性定量化制图技术能够有效弥补现有研究的不足,显著提升政策规划的科学性和有效性。

    Abstract:

    [Objective] This study aims to decompose and spatially map the uncertainties in projected biodiversity changes contributed by three key factors Species Distribution Models(SDMs), General Circulation Models(GCMs), and Shared Socioeconomic Pathways(SSPs) to better understand the sources of uncertainty in biodiversity change and make conservation and management decisions. [Methods] Using three well-established SDMs and eight critical climate variables, the study developed ecological niche models for ten plant species. Model performance was assessed via the area under the receiver operating characteristic curve(AUC). The rigorously validated niche models were projected onto future climate scenarios combining five GCMs and four SSPs, generating 60 distinct biodiversity distribution maps for the Loess Plateau(3SDMs×5 GCMs×4 SSPs,2060-2080). Uncertainty associated with different components was precisely quantified through three-way analysis of variance and spatially mapped using ArcGIS. [Results] All three SDMs demonstrated strong predictive performance, with mean AUC values exceeding 0.8 across all ten species, indicating a high level of accuracy. However, significant differences were observed among projection results from different SDMs, GCMs and SSPs combinations, with an average variation of 34%. Uncertainty decomposition revealed that SDMs and GCMs together contributed approximately 60% of the total uncertainty, far outweighing the uncertainty associated with SSPs in biodiversity simulation. [Conclusion] Comprehensive consideration of uncertainty differences among SDMs, GCMs and SSPs is crucial for climate change adaptation and biodiversity conservation. The quantitative uncertainty mapping methodology introduced in this study can effectively address the limitations of existing research and substantially enhance the scientific rigor and effectiveness of policy formulation.

    参考文献
    相似文献
    引证文献
引用本文

程盈盈, 张文瑶, 刘颖, 曹铭昌, 宋创业, 李国庆.气候变化下生物多样性模拟不确定性的定量分解[J].水土保持学报,2025,39(4):235~242,253

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-01
  • 最后修改日期:2025-04-29
  • 录用日期:
  • 在线发布日期: 2025-09-10
  • 出版日期:
文章二维码
关闭