北京市山区森林生态系统健康评估及驱动因素分析
CSTR:
作者:
作者单位:

作者简介:

窦婷婷(1997-),女,博士研究生,主要从事森林生态保护与修复研究。E-mail:1302667100@qq.com

通讯作者:

中图分类号:

S718.5

基金项目:

内蒙古自治区科技重大专项(2024JBGS0021-2-2);承德国家可持续发展议程创新示范区建设科技专项(202302F008)


Health Assessment and Driving Factors Analysis of Forest Ecosystems in Mountainous Areas of Beijing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 揭示北京山区森林生态系统2005—2020年健康状况时空演变特征,分析区域差异及影响因子解释力。[方法] 构建以“地理环境-植被结构-生态压力-植被功能”为准则层的森林生态系统健康评价体系,应用熵权-TOPSIS法,计算指标权重并评价北京山区森林生态系统健康,分析2005年、2010年、2015年、2020年森林生态系统健康变化特征。在此基础上,利用空间自相关分析和K-means聚类分析探究生态系统健康的空间聚集和区域差异。最后,利用地理探测器中的单因子探测和交互探测模块,量化各指标因子对森林生态系统健康空间分布的解释力。[结果] 1)2005—2020年北京山区森林生态系统健康水平呈上升趋势,现阶段北京山区森林生态系统以中等健康和较好健康为主,二者面积占比分别为41%和48%,空间上呈远城区高、近城区低的空间分异格局。2)北京山区森林生态系统健康状况持续向好,2015—2020年变化尤为明显,优等健康地区占比从2.43%升至18.65%。研究区莫兰指数在2005—2020年呈先降后升的趋势,表现出显著的全局空间自相关和局部空间自相关集聚特征,显著性空间类型以正相关为主,HH型和LL型分别为41.8%和30.8%,占显著性类型总数的79.6%。3)以乡镇为单位展示北京山区森林生态系统健康的空间差异性,结果表明,怀柔、密云和延庆地区的生态健康水平较高,而丰台、海淀和石景山区的森林健康状况相对较差。4)土壤保持、LAI、NDVI、乔木盖度、人口密度为北京山区森林生态系统健康的主导因子,各因子之间的交互作用表现为非线性增强和双因子增强;北京山区森林生态系统健康2005年由GDP和土壤保持主导,2010—2015年由LAI和土壤保持主导,2020年由土壤保持与空气净化主导。[结论] 2005—2020年北京山区森林生态系统健康状况不断好转,生态服务功能在森林生态系统健康中的影响力逐渐显现。在今后森林经营和管护中,需要充分考虑森林生态系统服务功能的提升及维护。

    Abstract:

    [Objective] To investigate the spatiotemporal evolution characteristics of forest ecosystem health in the mountainous areas of Beijing during 2005—2020,with particular emphasis on analyzing regional variations and the explanatory power of the influencing factors. [Methods] A forest ecosystem health evaluation system was established based on four criteria layers,including geographic environment,vegetation structure,ecological pressure,and vegetation function. The entropy-weight TOPSIS method was applied to calculate indicator weights and evaluate the health of forest ecosystems in the mountainous areas of Beijing. Temporal variations in ecosystem health characteristics were analyzed for the years 2005,2010,2015,and 2020. On this basis, spatial autocorrelation analysis and K-means clustering analysis were employed to investigate the spatial clustering patterns and regional variations in ecosystem health. Furthermore,the single-factor and interactive detection modules of the geographical detector model were utilized to quantitatively assess the explanatory power of various indicator factors influencing the spatial distribution of forest ecosystem health. [Results] 1)From 2005 to 2020,the health condition of forest ecosystems in the mountainous areas of Beijing exhibited a consistent upward trend. At this stage, these forest ecosystems were predominantly moderately healthy(41%) or relatively healthy(48%),forming a spatial differentiation pattern characterized by higher health levels in farther urban areas and lower health levels near the urban zones. 2)The forest ecosystem health in the mountainous areas of Beijing showed continuous improvement,with particularly notable progress between 2015 and 2020,as the proportion of areas classified as ″excellent health ″increased from 2.43% to 18.65%. The Moran's index in the study area exhibited a decline-then-rising trend from 2005 to 2020,indicating significant global and local spatial autocorrelation with clustering patterns. Among the significant spatial types, positive correlations dominated,with HH(41.8%)and LL(30.8%)clusters collectively accounting for 79.6% of all significant spatial types. 3) The spatial heterogeneity of forest ecosystem health in the mountainous areas of Beijing were analyzed at the township level. The results demonstrated that regions such as Huairou,Miyun,and Yanqing exhibited relatively higher ecological health levels,while forest ecosystems in Fengtai, Haidian, and Shijingshan districts showed comparatively poorer health conditions. 4) Soil conservation,Leaf Area Index(LAI),Normalized Difference Vegetation Index(NDVI),tree cover,and population density were identified as the dominant factors influencing forest ecosystem health in the mountainous areas of Beijing. The interactive effects among the factors showed nonlinear enhancement and two-factor enhancement patterns. The primary driving factors of forest ecosystem health in the mountainous areas of Beijing showed distinct variations:GDP and soil conservation were the dominant factors in 2005, followed by LAI and soil conservation during 2010—2015,while air purification and soil conservation were dominant in 2020. [Conclusion] Based on the analysis,the health condition of forest ecosystem in the mountainous areas of Beijing show consistent improvement during the 2005—2020 period,with the role of ecological services becoming increasingly prominent in shaping overall forest ecosystem health. These findings suggest that future forest management and conservation strategies should prioritize the enhancement and maintenance of forest ecosystem service functions.

    参考文献
    相似文献
    引证文献
引用本文

窦婷婷, 赵晨森, 牛健植, 伦小秀, 蔺星娜, 杨涛.北京市山区森林生态系统健康评估及驱动因素分析[J].水土保持学报,2025,39(5):264~275

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-02
  • 最后修改日期:2025-03-02
  • 录用日期:
  • 在线发布日期: 2025-10-20
  • 出版日期: 2025-10-28
文章二维码