大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征
CSTR:
作者:
作者单位:

作者简介:

刘贝贝(1999—),女,硕士研究生,主要从事森林土壤研究。E-mail:1015013484@qq.com

通讯作者:

中图分类号:

S714.5

基金项目:

国家重点研发计划项目(2021YFD2200405)


Characteristics of Soil Active Carbon Fractions and Carbon Pool Stability in Major Forest Types in Northern Daxing’an Mountains
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的] 土壤有机碳是森林生态系统碳循环的重要组成部分,活性有机碳能够指示土壤碳库变化,研究不同森林类型土壤活性碳组分及碳库稳定性的变化规律对理解碳循环的生物地球化学过程有重要意义,可为面向固碳减排的生态系统碳库管理提供依据。[方法] 以大兴安岭北部兴安落叶松林、樟子松林、白桦林和山杨林为研究对象,于2023年5—9月采集0—10,10—20 cm土层土壤样品,采用改良后的Loginow法测定土壤中活性易氧化碳含量,利用活性碳利用率(ER)及碳库活度(CPA)分析不同林型下土壤碳库稳定性差异。[结果] (1)5—9月,4种林型土壤总有机碳(TOC)、高活性易氧化碳(LOC-H)和中活性易氧化碳(LOC-M)均呈"单峰"变化趋势,于8月达到峰值,且阔叶林含量高于针叶林。(2)土壤稳定性有机碳利用率(ER4)在5—9月为72.33%~85.11%,显著高于其他3种活性碳利用率,在土壤碳库中占主导地位。(3)土壤碳库活度(CPA)为0.20~0.38,且山杨林>白桦林>樟子松林>兴安落叶松林,针叶林于8月达到峰值,阔叶林则在5月最高。(4)土壤活性有机碳含量和碳库稳定性受气候因素和土壤因素的共同作用。蔗糖酶为土壤因子中主要影响因素,而气候因子中降雨量和光合有效辐射影响较大。寒温带针叶林土壤有机碳整体稳定性大于阔叶林,但在温度较高情况下,针叶林深层土壤损失有机碳速率高于阔叶林。[结论] 研究结果有助于提高对寒温带森林土壤活性碳及有机碳库的认识,建议该地区尽快人工促进次生林演替或引入针叶树种,使其形成混交林,但在全球日益变暖的背景下,阔叶林在土壤碳库中发挥的作用也不容忽视。

    Abstract:

    [Objective] Soil organic carbon is an important component of the carbon cycle in forest ecosystems, and active organic carbon can indicate changes in soil carbon pools. Studying the pattern of change of soil active carbon fractions and carbon pool stability in different forest types is of great significance to the understanding of the biogeochemical processes of the carbon cycle, and can provide a basis for the management of ecosystem carbon pools oriented to carbon sequestration and emission reduction. [Methods] The soil samples of 0-10 and 10-20 cm soil layers were collected from May to September in the growing season from Larix gmelinii, Pinus sylvestris var. mongolica, Betula platyphylla and Populus davidiana forests in the northern part of Daxing' anling, and the contents of different reactive carbon oxides in the soils were measured by the modified Loginow method, and the active carbon utilisation (ER) and carbon pool activity (CPA) were used to measure the carbon pool stability and the carbon cycle. [Results] (1) From May to September, soil total organic carbon (TOC), highly active organic carbon (LOC-H) and moderately active organic carbon (LOC-M) of the four forest types showed a "single-peak" trend of change, and reached a peak in August, and the contents were higher in broad-leaved forests than in coniferous forests. (2) The utilisation rate of soil stability organic carbon (ER4) fluctuated between 72.33% and 85.11% from May to September, it was significantly higher than the utilisation rates of the other three types of active carbon, and dominated the soil carbon pool. (3) Soil carbon pool activity (CPA) fluctuated between 0.20 and 0.38, with P. davidiana forests>B. platyphylla forests>P. sylvestris var. mongolica forests >L. gmelinii forests; that of coniferous forests peaked in August, while that of broad-leaved forests were highest in May. (4) Soil active organic carbon content and carbon pool stability were subject to the combined effects of climatic factors and soil factors. Sucrase was the main influence of soil factors, while rainfall and photosynthetically active radiation were more influential among climatic factors. The overall stability of soil organic carbon in coniferous forests in the cold temperate zone was greater than that in broad-leaved forests, but the rate of organic carbon loss from deeper soil layers in coniferous forests was higher than that in broad-leaved forests under higher temperatures. [Conclusion] This study helps to improve the understanding of soil active carbon and organic carbon pools in cold temperate forests, artificially promoting secondary forest succession or introducing coniferous species as soon as possible is suggested to form mixed forests in the region, but the role played by broad-leaved forests in soil carbon pools should not be ignored in the context of increasing global warming.

    参考文献
    相似文献
    引证文献
引用本文

刘贝贝, 蔡体久.大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征[J].水土保持学报,2024,38(6):203~213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-27
  • 最后修改日期:2024-08-12
  • 录用日期:
  • 在线发布日期: 2025-01-17
  • 出版日期:
文章二维码