滇中城市群碳储量时空演变及其对LULC变化的响应
CSTR:
作者:
作者简介:

彭双云(1978—),男,博士,教授,主要从事土地利用变化的生态环境效应研究。E-mail:frankmei@126.com

中图分类号:

K903;X144

基金项目:

国家自然科学基金项目(42261073,41971369,42201037);云南省中青年学术和技术带头人后备人才项目(202305AC160083,202205AC160014);云南省基础研究专项重点项目(202201AS070024,202001AS070032);云南省基础研究专项面上项目(202401AT070103);云南师范大学大学生科研训练基金项目(KX2022136)


Spatiotemporal Evolution of Carbon Storage in the Central Yunnan Urban Agglomeration and Its Response to LULC Change
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 通过分析滇中城市群碳储量的时空演变特征及其对土地利用/覆被(land use/land cover,LULC)变化的响应,以深化对该区域碳循环的理解,从而有效地指导碳管理和生态恢复策略的制定。[方法] 利用InVEST和PLUS模型模拟并预测1990—2030年滇中城市群碳储量的时空演变规律,结合土地覆被变化数据,定量分析碳储量与LULC变化之间的响应关系。[结果] (1)1990—2020年滇中城市群的土地类型主要以林地、耕地和草地为主,林地、耕地和建设用地呈增长趋势,其中建设用地增幅最大;(2)滇中城市群碳储量呈现出"先增后减,逐渐趋于平稳"的变化特征,2000年达到最高值,为1.46×109 t,到2020年下降到1.45×109 t,空间上呈"西高东低"的分布特征;(3)未来不同发展情景下的碳储量预测显示,与2020年相比,4个情景到2030年碳储量均呈下降趋势,其中生态发展情景下降最少,相比2020年下降0.43×107 t,而耕地发展情景下降最为显著,相比2020年下降1.05×107 t;(4)耕地和林地间的转变是影响碳储量的主要因素,其中耕地向林地的转换对滇中城市群碳储量增加尤为关键,林地增加可显著提升区域碳储量,而草地减少则对碳储量产生负面影响。[结论] 林地和耕地转换对增加或降低滇中城市群碳储量具有显著影响。

    Abstract:

    [Objective] This paper aims to deepen the understanding of the carbon cycle by analyzing the spatiotemporal evolution characteristics of carbon storage in the central Yunnan urban agglomeration and its response to land use/land cover (LULC) change, so as to effective guidance for carbon management and ecological restoration strategies. [Methods] InVEST and PLUS models were used to simulate and predict the spatiotemporal evolution patterns of carbon storage in the central Yunnan urban agglomeration from 1990 to 2030. By combining data on LULC change, the relationship between carbon storage and LULC change was quantitatively analyzed. [Results] (1) From 1990 to 2020, the land types of the central Yunnan urban agglomeration were mainly forestland, cropland, and grassland, and forestland, cropland, and construction land showed an increasing trend, among which construction land increased the largest. (2) Carbon storage in the central Yunnan urban agglomeration presented a change characteristics of "first increase and then decrease, gradually stabilize", reaching a maximum value of 1.46×109 t in 2000, and decreasing to 1.45×109 t in 2020, showing a spatial distribution characteristic of "higher in the west, lower in the east". (3) The carbon storage predictions under different future development scenarios indicated that, compared with 2020, all four scenarios showed a declining trend in carbon storage by 2030, among which the ecological development scenario experienced the least decline, with a reduction of 0.43×107 t compared with 2020, while the cropland development scenario exhibited the most significant decline, with a reduction of 1.05×107 t compared with 2020. (4) The conversion between cultivated land and forestland was the primary factor affecting carbon storage. Specifically, the transformation of cultivated land into forests plays a crucial role in increasing carbon storage in the central Yunnan urban agglomeration. Forest expansion significantly enhanced regional carbon storage, while a reduction in grassland negatively impacted carbon storage. [Conclusion] The conversion of forestland and cultivated land has a significant impact on increasing or decreasing carbon storage in the central Yunnan urban agglomeration.

    参考文献
    [1] MEENA S K, DWIVEDI B S, MEENA M C, et al. Effect of nutrient management on soil carbon quantities, qualities, and stock under rice-wheat production system[J].Agriculture, 2022,12(11):e1822.
    [2] TAI H Y, XIA Y H, YAN M, et al. Construction of artificial forest point clouds by laser SLAM technology and estimation of carbon storage[J].Applied Sciences,2022,12(21):e10838.
    [3] 牛亚毅,李玉强,王旭洋,等.干旱年份沙质草地生态系统净CO2通量年变化特征[J].草业学报,2018,27(1):215-221. NIU YY, LI Y Q, WANG X Y, et al. Characteristics of annual variation in net carbon dioxide flux in a sandy grassland ecosystem during dry years[J].Acta Prataculturae Sinica,2018,27(1):215-221.
    [4] CSILLIK O, KUMAR P, MASCARO J, et al. Monitoring tropical forest carbon stocks and emissions using planet satellite data[J].Scientific Reports,2019,9:e17831.
    [5] 王旭洋,李玉强,连杰,等.CENTURY模型在不同生态系统的土壤有机碳动态预测研究进展[J].草业学报,2019,28(2):179-189. WANG X Y, LI Y Q, LIAN J, et al. Progress in application of the CENTURY model for prediction of soil carbon levels in different ecosystems [J].Acta Prataculturae Sinica,2019,28(2):179-189.
    [6] 陈雪娇,周伟,杨晗.2001—2017年三江源区典型草地群落碳源/汇模拟及动态变化分析[J].干旱区地理,2020,43(6):1583-1592. CHEN X J, ZHOU W, YANG H. Simulation and dynamic change of carbon source/sink in the typical grassland communities in the Three River Source Area from 2001 to 2017[J].Arid Land Geography,2020,43(6):1583-1592.
    [7] 李旭华,孙建新.Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析[J]. 植物生态学报,2018,42(12):1131-1144. LI X H, SUN J X. Testing parameter sensitivities and uncertainty analysis of Biome-BGC model in simulating carbon and water fluxes in broadleaved-Korean pine forests[J].Chinese Journal of Plant Ecology,2018,42(12):1131-1144.
    [8] PIAO S L, HE Y, WANG X H, et al. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects[J].Science China Earth Sciences,2022,65(4):641-651.
    [9] AJAYI T, GOMES J S, BERA A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches[J].Petroleum Science,2019,16(5):1028-1063.
    [10] HERN NDEZ-GUZM N R, RUIZ-LUNA A, GONZ LEZ C. Assessing and modeling the impact of land use and changes in land cover related to carbon storage in a western basin in Mexico[J].Remote Sensing Applications: Society and Environment,2019,13:318-327.
    [11] ADELISARDOU F, ZHAO W, CHOW R, et al. Spatiot-emporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft Plain, Iran)[J].International Journal of Environmental Science and Technology,2022,19(7):5929-5944.
    [12] 帕茹克·吾斯曼江,艾东,方一舒,等.基于InVEST与C-Markov模型的昆明市碳储量时空演变与预测[J].环境科学,2024,45(1):1-18. WUSIMANJIANG P, AI D, FANG Y S, et al. Spatial and temporal evolution and prediction of carbon storage in Kunming City based on InVEST and CA-Markov Model[J].Environmental Science,2024,45(1):1-18.
    [13] 石晶,石培基,王梓洋,等.基于PLUS-InVEST模型的酒泉市生态系统碳储量时空演变与预测[J].环境科学,2024,45(1):300-313. SHI J, SHI P J, WANG Z Y, et al. Spatial-temporal evolution and prediction of carbon storage in Jiuquan city ecosystem based on PLUS-InVEST model[J].Environmental Science,2024,45(1):300-313.
    [14] ZHAO M M, HE Z B, DU J, et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models[J].Ecological Indicators,2019,98:29-38.
    [15] 王子昊,王冰,张宇飞,等.基于PLUS-InVEST模型的呼和浩特市多情景土地利用变化动态模拟及碳储量评估[J].农业资源与环境学报,2024,41(2):292-304. WANG Z H, WANG B, ZHANG Y F, el at. Dynamic simulation of multi-scenario land use change and carbon storage assessment in Hohhot city based on PLUS-InVEST model[J].Journal of Agricultural Resources and Environment,2024,41(2):292-304.
    [16] 王怡冰,李成亮,张鹏,等.济南南部山区土地利用/覆被变化对碳储量的影响研究.中国环境科学,2024.DOI:10.19674/j.cnki.issn1000-6923.20240026.001. WANG Y B, LI C L, ZHANG P, el at. Research on the impact of land use/cover change on carbon storage in the Southern Mountain Area of Jinan.China Environmental Science,2024.DOI:10.19674/j.cnki.issn1000-6923.20240026.001.
    [17] LI P C, CHEN J D, LI Y X, et al. Using the InVEST-PLUS Model to predict and analyze the pattern of ecosystem carbon storage in Liaoning Province, China[J]. Remote Sensing, 2023,15(16):e4050.
    [18] LI K, CAO J, ADAMOWSKI J F, et al. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China[J].Environmental Development,2021,39:e100641.
    [19] GENG L L, ZHANG Y Y, HUI H X, et al. Response of urban ecosystem carbon storage to land use/cover change and its vulnerability based on major function-oriented zone planning[J].Land,2023,12(8):e1563.
    [20] 黄韬,程颖.基于PLUS-InVEST 模型的福建省土地利用变化与碳储量评估[J].水土保持学报,2024,38(2):246-257. HUANG Tao, CHENG Y. Evaluation of land use change and carbon storage in Fujian Province based on PlUS-InVEST model[J].Journal of Soil and Water Conservation,2024,38(2):246-257.
    [21] 祁迷,王飞,滑永春,等.基于PLUS与InVEST模型的内蒙古自治区土地利用变化及碳储量评估[J].水土保持学报,2023,37(6):194-200. QI M, WANG F, HUA Y C, et al. Assessment of land use change and carbon storage in Inner Mongolia autonomous region based on PLUS and InVEST models[J].Journal of Soil and Water Conservation,2023,37(6):194-200.
    [22] LI Z Z, CHENG X Q, HAN H R. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China[J].Forests,2020,11(5):e584.
    [23] 邵壮,陈然,赵晶,等.基于FLUS与InVEST模型的北京市生态系统碳储量时空演变与预测[J].生态学报,2022,42(23):9456-9469. SHAO Z, CHEN R, ZHAO J, et al.Spatio-temporal evolution and prediction of carbon storage in Beijing’s ecosystem based on FLUS and InVEST models[J]. Acta Ecologica Sinica, 2022,42(23):9456-9469.
    [24] 林彤,杨木壮,吴大放,等.基于InVEST-PLUS模型的碳储量空间关联性及预测:以广东省为例[J].中国环境科学, 2022,42(10):4827-4839. LINT, YANG M Z, WU D F, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model: A case study in Guangdong Province[J].China Environmental Science,2022,42(10):4827-4839.
    [25] 巩晟萱,张玉虎,李宇航.基于PLUS-InVEST模型的京津冀碳储量变化及预测[J].干旱区资源与环境,2023,37(6):20-28. GONG S X, ZHANG Y H, LI Y H. Spatio-temporal variation and prediction of carbon storage in Beijing-Tianjin-Hebei region: A PLUS-InVEST model approach[J].Journal of Arid Land Resources and Environment,2023,37(6):20-28.
    [26] ZHOU R B, LIN M Z, GONG J Z, et al. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC[J].Journal of Geographical Sciences,2019,29(5):831-845.
    [27] LI W, CHEN Z J, LI M C, et al. Carbon emission and economic development trade-offs for optimizing land-use allocation in the Yangtze River Delta, China[J].Ecological Indicators,2023,147:e109950.
    [28] 边蕊,赵安周,刘宪锋,等.关中平原城市群土地利用变化对碳储量的影响[J].环境科学,2024,45(6):3260-3269. BIAN R, ZHAO A Z, LIU X F,et al. Impact of land use change on carbon storage in urban agglomerations in the Guanzhong Plain[J]. Environmental Science,2024, 45(6):3260-3269.
    [29] CANADELL J G, RAUPACH M R. Managing forests for climate change mitigation[J].Science,2008,320(5882):1456-1457.
    [30] PAUSTIAN K, LEHMANN J, OGLE S, et al, Climate-smart soils[J].Nature,2016,532(7597):49-57.
    [31] YANG J, HUANG X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J].Earth System Science Data,2021,13(8):3907-3925.
    [32] 李月, 罗红芬. 黔中喀斯特地区典型县域碳储量时空演变及多情景模拟预测:以普定县为例[J].环境科学,2024,45(2):961-973. LI Y, LUO H F.Spatio-temporal evolution and multi-scenario simulation of carbon storage in Karst regions of central Guizhou Province: Taking Puding County as an example[J].Environmental Science, 2024,45(2):961-973.
    相似文献
    引证文献
引用本文

彭双云, 陈明潇, 张老伟, 龚陆平, 范嘉俊.滇中城市群碳储量时空演变及其对LULC变化的响应[J].水土保持学报,2024,38(4):246~256,266

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-08
  • 最后修改日期:2024-03-01
  • 在线发布日期: 2024-07-24
  • 出版日期: 2024-08-28
文章二维码