基于流变学法研究植被恢复下土壤微结构稳定性
DOI:
作者:
作者单位:

1.中国科学院水利部水土保持研究所 黄土高原土壤侵蚀与旱地农业国家重点实验室;2.西北农林科技大学 资源环境学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42277311);陕西省自然科学(2023-JC-YB-263);国家级大学生创新创业训练计划项目(202210712157)。


Rheological evaluation of soil microstructure stability duing vegetation restoration
Author:
Affiliation:

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,CAS MWR,Yangling

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]为探究黄土高原植被恢复过程中土壤微结构稳定性的演变规律。[方法]选取子午岭林区4个不同植被演替阶段的土壤为研究对象,通过流变学方法振幅扫描测试方式测定不同基质势(0,-3,-10 kPa)下土壤抗剪切强度参数和粘弹性参数,并分析其与土壤理化性质之间的关系。[结果](1)土壤抗剪切强度和黏弹性随植被演替阶段的增加而增加,主要是由于植被恢复过程中土壤有机碳、交换性Ca2+、砂粒含量增加和Na+含量下降提高了土壤颗粒间的黏附力和摩擦力。(2)土壤抗剪切强度参数随基质势的降低而增加,在低基质势条件下,土壤抗剪切强度参数(G'LVE、τLVE和τmax)与交换性Ca2+、砂粒含量相关性不显著,而在高基质势条件下,土壤抗剪切强度参数与交换性Ca2+呈显著正相关(p < 0.05),τmax、G'LVE、τYP和G'YP均与砂粒含量呈显著正相关。(3)土壤黏弹性参数(γYP和Iz)随基质势的降低而降低;高基质势条件下土壤黏弹性参数与有机碳含量呈正相关,且随着基质势的降低,相关性逐渐减弱;不同基质势下黏弹性参数均与黏粒含量呈显著负相关。(4)土壤整体力学稳定性在0 kPa时与土壤Ca2+呈正相关关系,-3 kPa时与土壤粉粒、K+含量呈负相关关系,-10 kPa时与粘粒含量呈正相关关系。[结论]研究结果揭示了土壤在不同植被类型不同基质势下的力学稳定性变化规律以及影响机制,为理解黄土高原植被恢复过程中土壤特性的演变提供了重要依据,也为未来的土壤保护和生态恢复工作提供理论支撑。

    Abstract:

    [Objective] Soil structural stability is important for soil quality, fertility, crop productivity, and ecological integrity. To evaluate the dynamic evolution of soil microstructure stability during vegetation restoration on the Loess Plateau, soil samples from four stages of vegetation succession in the Ziwuling forest region were examined. [Methods] Utilizing the amplitude scanning test method, soil shear strength and viscoelastic parameters were assessed under various matrix potentials (0, -3, -10kPa). Correlation analyses between these parameters and soil physicochemical properties were conducted. [Results] Soil shear strength and viscoelasticity exhibited an increasing trend with advancing vegetation succession stages, attributed primarily to soil organic carbon, exchangeable Ca2+, and sand content, along with reduced Na+ during vegetation recovery. This augmentation contributed to enhanced interparticle adhesion and frictional forces. Soil shear strength parameters exhibited a positive correlation with exchangeable Ca2+ and sand content, particularly under high matrix potential conditions, whereas no significant correlations were observed under low matrix potential conditions. Notably, soil shear strength parameters showed a significant positive correlation with exchangeable Ca2+ (P < 0.05), while τmax, G'LVE, τYP, and G'YP exhibited significant positive correlations with sand content. Soil viscoelastic parameters (γYP and Iz) showed a decreasing trend with declining matrix potential. Particularly, under high matrix potential conditions, these parameters exhibited a positive correlation with organic carbon content, which gradually attenuated with decreasing matrix potential. Viscoelastic parameters were negatively correlated with clay content under different matrix potential. The overall mechanical stability of soil was positively correlated with soil Ca2+ at 0 kPa, negatively correlated with soil silt and K+ content at -3 kPa, and positively correlated with clay content at -10 kPa. [Conclusion] The changes of soil mechanical stability under different vegetation types and different matrix potential and the influencing mechanism were revealed , which provided an important basis for understanding the evolution of soil characteristics in the process of vegetation restoration on the Loess Plateau, and also provided theoretical support for soil protection and ecological restoration in the future.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-29
  • 最后修改日期:2024-04-04
  • 录用日期:2024-05-23
  • 在线发布日期: 2024-07-18
  • 出版日期: