青海省生态修复关键区识别及修复分区划分
DOI:
作者:
作者单位:

1.西安理工大学;2.西安理工大学 省部共建西北旱区生态水利国家重点实验室

作者简介:

通讯作者:

中图分类号:

X171.1?

基金项目:

三江源地区低覆盖度灌木林生态服务功能调查及研究项目(104-441123174);秦岭—黄土高原过渡带自然资源要素相互作用与生态退化调查、监测与评价(DD20220882)


Identification of key areas for ecological restoration and division of restoration zones in Qinghai Province
Author:
Affiliation:

1.Xi''''an University of Technology State Key Laboratory of Ecological Hydrology in Northwest Arid Zones,Xi''an,Shaanxi;2.西安理工大学

Fund Project:

Survey and research project on the ecological service functions of low-cover shrub forests in the Sanjiangyuan region (104-441123174)、Survey, monitoring and evaluation of the interaction of natural resource elements and ecological degradation in the Qinling-Laotian Plateau transition zone (DD20220882)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]基于“整体保护、系统修复、综合治理”治理思路识别生态修复优先空间抑制生态退化,是区域社会-经济协调发展、筑牢生态安全屏障和推进生态文明建设的重要举措。[方法]本文以青海省为研究区,通过土地利用强度、土地利用重心迁移反映城市化进程,定量评估2005—2020年7项生态系统服务、生态敏感性和生境退化度,提出基于“生态系统服务簇-生态敏感性-生境退化度”识别生态修复优先空间,将内部缺陷和外界胁迫相结合,划定5类生态修复优先区并提出相应修复策略。[结果] 青海省2005—2020年产水深度分别为125.1 mm、106.9 mm、80.0 mm、135.4 mm,水源涵养深度稳定在15 mm左右。粮食产量由1.42 t/hm2提升至2.02 t/hm2,防风固沙能力由2.42 t/hm2提升至4.59 t/hm2,土壤保持能力由85.9 t/hm2下降至65.3 t/hm2;青海省生态系统服务簇可划分为态宜居和谐簇、水土耦合协调簇、生态源地保育簇、自然生态修复簇、防风固沙功能簇5类。基于双变量自相关识别生态恢复优先点结果可知,青海省主要为关键生态恢复点和自然生态恢复点,面积分别占5.26%和2.55%,其中关键生态恢复点和生态宜居簇增加区域在空间上分布基本吻合。[结论]青海省生态修复优先区集中在生态环境脆弱的西北荒漠地区、高海拔山区、水源地和河流沿岸及人类活动较频繁的河湟谷地和天峻县、兴海-玛多-曲麻莱县一带。

    Abstract:

    [Objective] Identifying priority spaces for ecological restoration and curbing ecological degradation based on the governance idea of "holistic protection, systematic restoration and comprehensive management" is an important measure for the coordinated development of regional socio-economics, the construction of a firm ecological security barrier and the promotion of ecological civilization.[Methods] This paper takes Qinghai Province as the study area, reflects the urbanisation process through land use intensity and land use centre of gravity shift, quantitatively evaluates seven ecosystem services, ecological sensitivity and habitat degradation from 2005 to 2020, and proposes to identify the priority space for ecological restoration based on the cluster of ecosystem services, ecological sensitivity and habitat degradation. We proposed to identify ecological restoration priority spaces based on "ecosystem service cluster, ecological sensitivity and habitat degradation degree", and combined internal defects and external coercion to delineate five types of ecological restoration priority zones and propose corresponding restoration strategies.[Results] The depth of water production in Qinghai Province from 2005 to 2020 will be 125.1 mm, 106.9 mm, 80.0 mm and 135.4 mm respectively, and the depth of water retention will be stabilised at about 15 mm. Grain output will increase from 1.42 t/hm2 to 2.02 t/hm2, wind and sand control capacity will increase from 2.42 t/hm2 to 4.59 t/hm2, and soil conservation capacity will decrease from 85.9 t/hm2 to 65.3 t/hm2; The ecosystem service clusters in Qinghai Province were classified into five categories: Harmony of Habitat, Harmony of Soil and Water, Conservation of Ecological Sources, Restoration of Natural Ecology, and Functional Cluster of Wind and Sand Conservation. Based on the results of bivariate autocorrelation to identify the ecological restoration priority points, it can be seen that the key ecological restoration points and natural ecological restoration points are the main ones in Qinghai Province, accounting for 5.26% and 2.55% of the area, respectively, in which the key ecological restoration points and ecological livability clusters increase the area of the spatial distribution of the basic coincides with each other.[Conclusion] The priority areas for ecological restoration in Qinghai Province are concentrated in the ecologically fragile northwestern desert areas, high-altitude mountainous areas, water sources and river coasts and the river valley where human activities are more frequent, and in the area around Tianjun County and Xinghai-Mado-Qumalai County.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-16
  • 最后修改日期:2024-01-15
  • 录用日期:2024-01-15
  • 在线发布日期: 2024-04-29
  • 出版日期: